File size: 1,346 Bytes
2782b11 7fc99b0 2782b11 129944b 2782b11 e93ee4d 2782b11 860239d 2782b11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
from typing import Any, Dict, List
from haystack import Document
from fastrag.embedders import (
IPEXSentenceTransformersDocumentEmbedder,
IPEXSentenceTransformersTextEmbedder,
)
class EndpointHandler:
def __init__(self, path=""):
model_id = "Intel/bge-small-en-v1.5-rag-int8-static"
self.query_embedder = IPEXSentenceTransformersTextEmbedder(model=model_id)
self.document_embedder = IPEXSentenceTransformersDocumentEmbedder(model=model_id)
self.query_embedder.warm_up()
self.document_embedder.warm_up()
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
text = data.get("text", None)
if text is not None:
assert isinstance(text, str), "Expected text to be a string"
return self.query_embedder.run(text)
documents = data.get("documents", None)
if documents is not None:
assert isinstance(documents, list), "Expected documents to be a list"
assert all(
isinstance(document, dict) for document in documents
), "Expected each document in documents to be a dictionary"
documents = [Document(**document) for document in documents]
return self.document_embedder.run(documents)
raise ValueError("Expected either text or documents")
|