sentence_transformers_support
#7
by
arthurbresnu
HF Staff
- opened
- 1_SpladePooling/config.json +5 -0
- README.md +91 -0
- config_sentence_transformers.json +14 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
1_SpladePooling/config.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"pooling_strategy": "max",
|
3 |
+
"activation_function": "relu",
|
4 |
+
"word_embedding_dimension": null
|
5 |
+
}
|
README.md
CHANGED
@@ -10,6 +10,12 @@ tags:
|
|
10 |
- query-expansion
|
11 |
- document-expansion
|
12 |
- bag-of-words
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
---
|
14 |
|
15 |
# opensearch-neural-sparse-encoding-v2-distill
|
@@ -37,6 +43,91 @@ The training datasets includes MS MARCO, eli5_question_answer, squad_pairs, Wiki
|
|
37 |
|
38 |
OpenSearch neural sparse feature supports learned sparse retrieval with lucene inverted index. Link: https://opensearch.org/docs/latest/query-dsl/specialized/neural-sparse/. The indexing and search can be performed with OpenSearch high-level API.
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
## Usage (HuggingFace)
|
42 |
This model is supposed to run inside OpenSearch cluster. But you can also use it outside the cluster, with HuggingFace models API.
|
|
|
10 |
- query-expansion
|
11 |
- document-expansion
|
12 |
- bag-of-words
|
13 |
+
- sentence-transformers
|
14 |
+
- sparse-encoder
|
15 |
+
- sparse
|
16 |
+
- splade
|
17 |
+
pipeline_tag: feature-extraction
|
18 |
+
library_name: sentence-transformers
|
19 |
---
|
20 |
|
21 |
# opensearch-neural-sparse-encoding-v2-distill
|
|
|
43 |
|
44 |
OpenSearch neural sparse feature supports learned sparse retrieval with lucene inverted index. Link: https://opensearch.org/docs/latest/query-dsl/specialized/neural-sparse/. The indexing and search can be performed with OpenSearch high-level API.
|
45 |
|
46 |
+
## Usage (Sentence Transformers)
|
47 |
+
|
48 |
+
First install the Sentence Transformers library:
|
49 |
+
|
50 |
+
```bash
|
51 |
+
pip install -U sentence-transformers
|
52 |
+
```
|
53 |
+
|
54 |
+
Then you can load this model and run inference.
|
55 |
+
|
56 |
+
```python
|
57 |
+
from sentence_transformers.sparse_encoder import SparseEncoder
|
58 |
+
|
59 |
+
# Download from the 🤗 Hub
|
60 |
+
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-v2-distill")
|
61 |
+
|
62 |
+
query = "What's the weather in ny now?"
|
63 |
+
document = "Currently New York is rainy."
|
64 |
+
|
65 |
+
query_embed = model.encode_query(query)
|
66 |
+
document_embed = model.encode_document(document)
|
67 |
+
|
68 |
+
sim = model.similarity(query_embed, document_embed)
|
69 |
+
print(f"Similarity: {sim}")
|
70 |
+
# Similarity: tensor([[38.6113]])
|
71 |
+
|
72 |
+
decoded_query = model.decode(query_embed)
|
73 |
+
decoded_document = model.decode(document_embed)
|
74 |
+
|
75 |
+
for i in range(len(decoded_query)):
|
76 |
+
query_token, query_score = decoded_query[i]
|
77 |
+
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
|
78 |
+
if doc_score != 0:
|
79 |
+
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
|
80 |
+
|
81 |
+
# Token: york, Query score: 2.7273, Document score: 2.9088
|
82 |
+
# Token: now, Query score: 2.5734, Document score: 0.9208
|
83 |
+
# Token: ny, Query score: 2.3895, Document score: 1.7237
|
84 |
+
# Token: weather, Query score: 2.2184, Document score: 1.2368
|
85 |
+
# Token: current, Query score: 1.8693, Document score: 1.4146
|
86 |
+
# Token: today, Query score: 1.5888, Document score: 0.7450
|
87 |
+
# Token: sunny, Query score: 1.4704, Document score: 0.9247
|
88 |
+
# Token: nyc, Query score: 1.4374, Document score: 1.9737
|
89 |
+
# Token: currently, Query score: 1.4347, Document score: 1.6019
|
90 |
+
# Token: climate, Query score: 1.1605, Document score: 0.9794
|
91 |
+
# Token: upstate, Query score: 1.0944, Document score: 0.7141
|
92 |
+
# Token: forecast, Query score: 1.0471, Document score: 0.5519
|
93 |
+
# Token: verve, Query score: 0.9268, Document score: 0.6692
|
94 |
+
# Token: huh, Query score: 0.9126, Document score: 0.4486
|
95 |
+
# Token: greene, Query score: 0.8960, Document score: 0.7706
|
96 |
+
# Token: picturesque, Query score: 0.8779, Document score: 0.7120
|
97 |
+
# Token: pleasantly, Query score: 0.8471, Document score: 0.4183
|
98 |
+
# Token: windy, Query score: 0.8079, Document score: 0.2140
|
99 |
+
# Token: favorable, Query score: 0.7537, Document score: 0.4925
|
100 |
+
# Token: rain, Query score: 0.7519, Document score: 2.1456
|
101 |
+
# Token: skies, Query score: 0.7277, Document score: 0.3818
|
102 |
+
# Token: lena, Query score: 0.6995, Document score: 0.8593
|
103 |
+
# Token: sunshine, Query score: 0.6895, Document score: 0.2410
|
104 |
+
# Token: johnny, Query score: 0.6621, Document score: 0.3016
|
105 |
+
# Token: skyline, Query score: 0.6604, Document score: 0.1933
|
106 |
+
# Token: sasha, Query score: 0.6117, Document score: 0.2197
|
107 |
+
# Token: vibe, Query score: 0.5962, Document score: 0.0414
|
108 |
+
# Token: hardly, Query score: 0.5381, Document score: 0.7560
|
109 |
+
# Token: prevailing, Query score: 0.4583, Document score: 0.4243
|
110 |
+
# Token: unpredictable, Query score: 0.4539, Document score: 0.5073
|
111 |
+
# Token: presently, Query score: 0.4350, Document score: 0.8463
|
112 |
+
# Token: hail, Query score: 0.3674, Document score: 0.2496
|
113 |
+
# Token: shivered, Query score: 0.3324, Document score: 0.5506
|
114 |
+
# Token: wind, Query score: 0.3281, Document score: 0.1964
|
115 |
+
# Token: rudy, Query score: 0.3052, Document score: 0.5785
|
116 |
+
# Token: looming, Query score: 0.2797, Document score: 0.0357
|
117 |
+
# Token: atmospheric, Query score: 0.2712, Document score: 0.0870
|
118 |
+
# Token: vicky, Query score: 0.2471, Document score: 0.3490
|
119 |
+
# Token: sandy, Query score: 0.2247, Document score: 0.2383
|
120 |
+
# Token: crowded, Query score: 0.2154, Document score: 0.5737
|
121 |
+
# Token: chilly, Query score: 0.1723, Document score: 0.1857
|
122 |
+
# Token: blizzard, Query score: 0.1700, Document score: 0.4110
|
123 |
+
# Token: ##cken, Query score: 0.1183, Document score: 0.0613
|
124 |
+
# Token: unrest, Query score: 0.0923, Document score: 0.6363
|
125 |
+
# Token: russ, Query score: 0.0624, Document score: 0.2127
|
126 |
+
# Token: blackout, Query score: 0.0558, Document score: 0.5542
|
127 |
+
# Token: kahn, Query score: 0.0549, Document score: 0.1589
|
128 |
+
# Token: 2020, Query score: 0.0160, Document score: 0.0566
|
129 |
+
# Token: nighttime, Query score: 0.0125, Document score: 0.3753
|
130 |
+
```
|
131 |
|
132 |
## Usage (HuggingFace)
|
133 |
This model is supposed to run inside OpenSearch cluster. But you can also use it outside the cluster, with HuggingFace models API.
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model_type": "SparseEncoder",
|
3 |
+
"__version__": {
|
4 |
+
"sentence_transformers": "5.0.0",
|
5 |
+
"transformers": "4.50.3",
|
6 |
+
"pytorch": "2.6.0+cu124"
|
7 |
+
},
|
8 |
+
"prompts": {
|
9 |
+
"query": "",
|
10 |
+
"document": ""
|
11 |
+
},
|
12 |
+
"default_prompt_name": null,
|
13 |
+
"similarity_fn_name": "dot"
|
14 |
+
}
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.sparse_encoder.models.MLMTransformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_SpladePooling",
|
12 |
+
"type": "sentence_transformers.sparse_encoder.models.SpladePooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|