File size: 7,835 Bytes
760549e 6c769fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
---
license: apache-2.0
---
<div align="center">
<img src="https://github.com/OpenBMB/MiniCPM/tree/main/assets/minicpm_logo.png" width="500em" ></img>
</div>
<p align="center">
<a href="https://github.com/OpenBMB/MiniCPM/" target="_blank">MiniCPM Repo</a> |
<a href="https://arxiv.org/abs/2404.06395" target="_blank">MiniCPM Paper</a> |
<a href="https://github.com/OpenBMB/MiniCPM-V/" target="_blank">MiniCPM-V Repo</a> |
Join us in <a href="https://discord.gg/3cGQn9b3YM" target="_blank">Discord</a> and <a href="https://github.com/OpenBMB/MiniCPM/blob/main/assets/wechat.jpg" target="_blank">WeChat</a>
</p>
## Introduction
MiniCPM3-4B is the 3rd generation of MiniCPM series. The overall performance of MiniCPM3-4B surpasses Phi-3.5-mini-Instruct and GPT-3.5-Turbo-0125, being comparable with many recent 7B~9B models.
Compared to MiniCPM1.0/MiniCPM2.0, MiniCPM3-4B has a more powerful and versatile skill set to enable more general usage. MiniCPM3-4B supports function call, along with code interpreter. Please refer to []() for usage guidelines.
MiniCPM3-4B has a 32k context window. Equipped with LLMxMapreduce, MiniCPM3-4B can handle infinite contexts theoretically, without requiring huge amount of memory.
## Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
path = "openbmb/MiniCPM3-4B"
device = "cuda"
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.bfloat16, device_map=device, trust_remote_code=True)
messages = [
{"role": "user", "content": "推荐5个北京的景点。"},
]
model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(device)
model_outputs = model.generate(
model_inputs,
max_new_tokens=1024,
top_p=0.7,
temperature=0.7,
repetition_penalty=1.02
)
output_token_ids = [
model_outputs[i][len(model_inputs[i]):] for i in range(len(model_inputs))
]
responses = tokenizer.batch_decode(output_token_ids, skip_special_tokens=True)[0]
print(responses)
```
## Evaluation Results
<table>
<tr>
<td>Benchmark</td>
<td>Qwen2-7B-Instruct</td>
<td>GLM-4-9B-Chat</td>
<td>Gemma2-9B-it</td>
<td>Llama3.1-8B-Instruct</td>
<td>GPT-3.5-Turbo-0125</td>
<td>Phi-3.5-mini-Instruct(3.8B)</td>
<td>MiniCPM3-4B </td>
</tr>
<tr>
<td colspan="15" align="left"><strong>English</strong></td>
</tr>
<tr>
<td>MMLU</td>
<td>70.5</td>
<td>72.4</td>
<td>72.6</td>
<td>69.4</td>
<td>69.2</td>
<td>68.4</td>
<td>67.2 </td>
</tr>
<tr>
<td>BBH</td>
<td>64.9</td>
<td>76.3</td>
<td>65.2</td>
<td>67.8</td>
<td>70.3</td>
<td>68.6</td>
<td>70.2 </td>
</tr>
<tr>
<td>MT-Bench</td>
<td>8.41</td>
<td>8.35</td>
<td>7.88</td>
<td>8.28</td>
<td>8.17</td>
<td>8.60</td>
<td>8.41 </td>
</tr>
<tr>
<td>IFEVAL (Prompt Strict-Acc.)</td>
<td>51.0</td>
<td>64.5</td>
<td>71.9</td>
<td>71.5</td>
<td>58.8</td>
<td>49.4</td>
<td>68.4 </td>
</tr>
<tr>
<td colspan="15" align="left"><strong>Chinese</strong></td>
</tr>
<tr>
<td>CMMLU</td>
<td>80.9</td>
<td>71.5</td>
<td>59.5</td>
<td>55.8</td>
<td>54.5</td>
<td>46.9</td>
<td>73.3 </td>
</tr>
<tr>
<td>CEVAL</td>
<td>77.2</td>
<td>75.6</td>
<td>56.7</td>
<td>55.2</td>
<td>52.8</td>
<td>46.1</td>
<td>73.6 </td>
</tr>
<tr>
<td>AlignBench v1.1</td>
<td>7.10</td>
<td>6.61</td>
<td>7.10</td>
<td>5.68</td>
<td>5.82</td>
<td>5.73</td>
<td>6.74 </td>
</tr>
<tr>
<td>FollowBench-zh (SSR)</td>
<td>63.0</td>
<td>56.4</td>
<td>57.0</td>
<td>50.6</td>
<td>64.6</td>
<td>58.1</td>
<td>66.8 </td>
</tr>
<tr>
<td colspan="15" align="left"><strong>Math</strong></td>
</tr>
<tr>
<td>MATH</td>
<td>49.6</td>
<td>50.6</td>
<td>46.0</td>
<td>51.9</td>
<td>41.8</td>
<td>46.4</td>
<td>46.6 </td>
</tr>
<tr>
<td>GSM8K</td>
<td>82.3</td>
<td>79.6</td>
<td>79.7</td>
<td>84.5</td>
<td>76.4</td>
<td>82.7</td>
<td>81.1 </td>
</tr>
<tr>
<td>MathBench</td>
<td>63.4</td>
<td>59.4</td>
<td>45.8</td>
<td>54.3</td>
<td>48.9</td>
<td>54.9</td>
<td>65.6 </td>
</tr>
<tr>
<td colspan="15" align="left"><strong>Code</strong></td>
</tr>
<tr>
<td>HumanEval+</td>
<td>70.1</td>
<td>67.1</td>
<td>61.6</td>
<td>62.8</td>
<td>66.5</td>
<td>68.9</td>
<td>68.3 </td>
</tr>
<tr>
<td>MBPP+</td>
<td>57.1</td>
<td>62.2</td>
<td>64.3</td>
<td>55.3</td>
<td>71.4</td>
<td>55.8</td>
<td>63.2 </td>
</tr>
<tr>
<td>LiveCodeBench</td>
<td>22.2</td>
<td>20.2</td>
<td>19.2</td>
<td>20.4</td>
<td>24.0</td>
<td>19.6</td>
<td>22.6 </td>
</tr>
<tr>
<td colspan="15" align="left"><strong>Function Call</strong></td>
</tr>
<tr>
<td>BFCL</td>
<td>71.6</td>
<td>70.1</td>
<td>19.2</td>
<td>73.3</td>
<td>75.4</td>
<td>48.4</td>
<td>76.0 </td>
</tr>
<tr>
<td colspan="15" align="left"><strong>Overall</strong></td>
</tr>
<tr>
<td>Average</td>
<td>65.3</td>
<td>65.0</td>
<td>57.9</td>
<td>60.8</td>
<td>61.0</td>
<td>57.2</td>
<td><strong>66.3</strong></td>
</tr>
</table>
## Statement
* As a language model, MiniCPM3-4B generates content by learning from a vast amount of text.
* However, it does not possess the ability to comprehend or express personal opinions or value judgments.
* Any content generated by MiniCPM3-4B does not represent the viewpoints or positions of the model developers.
* Therefore, when using content generated by MiniCPM3-4B, users should take full responsibility for evaluating and verifying it on their own.
## LICENSE
* This repository is released under the [Apache-2.0](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE) License.
* The usage of MiniCPM3-4B model weights must strictly follow [MiniCPM Model License.md](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md).
* The models and weights of MiniCPM3-4B are completely free for academic research. after filling out a ["questionnaire"](https://modelbest.feishu.cn/share/base/form/shrcnpV5ZT9EJ6xYjh3Kx0J6v8g) for registration, are also available for free commercial use.
## Citation
```
@article{hu2024minicpm,
title={MiniCPM: Unveiling the Potential of Small Language Models with Scalable Training Strategies},
author={Hu, Shengding and Tu, Yuge and Han, Xu and He, Chaoqun and Cui, Ganqu and Long, Xiang and Zheng, Zhi and Fang, Yewei and Huang, Yuxiang and Zhao, Weilin and others},
journal={arXiv preprint arXiv:2404.06395},
year={2024}
}
``` |