MiniCPM-o-2_6 / modeling_minicpmo.py
BUAADreamer's picture
add len(audio_embeddings) > 0 judge
c37b41a verified
raw
history blame
140 kB
# coding=utf-8
# Copyright 2025 The OpenBMB Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import logging
import math
import os
import types
from collections.abc import Iterator
from copy import deepcopy
from dataclasses import dataclass
from threading import Thread
from typing import List
from typing import Literal
from typing import Optional
from typing import Tuple
from typing import Union
import numpy as np
import soundfile as sf
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.utils.parametrize as P
from huggingface_hub import hf_hub_download
from PIL import Image
from torch.nn.utils.parametrizations import weight_norm
from tqdm import tqdm
from transformers import AutoProcessor
from transformers import BertTokenizerFast
from transformers import LlamaConfig
from transformers import LlamaModel
from transformers import LogitsWarper
from transformers import PreTrainedModel
from transformers import Qwen2ForCausalLM
from transformers import Qwen2PreTrainedModel
from transformers import TextIteratorStreamer
from transformers import TopKLogitsWarper
from transformers import TopPLogitsWarper
from transformers.cache_utils import Cache
from transformers.cache_utils import DynamicCache
from transformers.cache_utils import EncoderDecoderCache
from transformers.cache_utils import StaticCache
from transformers.modeling_outputs import BaseModelOutputWithPast
from transformers.modeling_outputs import ModelOutput
from transformers.models.whisper.modeling_whisper import ACT2FN
from transformers.models.whisper.modeling_whisper import WHISPER_ATTENTION_CLASSES
from transformers.models.whisper.modeling_whisper import WhisperConfig
from transformers.models.whisper.modeling_whisper import WhisperEncoder
try:
from vector_quantize_pytorch import GroupedResidualFSQ
from vocos import Vocos
from vocos.pretrained import instantiate_class
_tts_deps = True
except:
_tts_deps = False
from .configuration_minicpm import ConditionalChatTTSConfig
from .configuration_minicpm import MiniCPMOConfig
from .modeling_navit_siglip import SiglipVisionTransformer
from .resampler import Resampler
from .utils import NumberToTextConverter
from .utils import sentence_end
from .utils import VoiceChecker
logger = logging.getLogger(__name__)
@dataclass
class OmniOutput(ModelOutput):
text: Optional[Union[str, List[str], Iterator]] = None
spk_embeds: Optional[torch.FloatTensor] = None
audio_wav: Optional[np.ndarray] = None
sampling_rate: Optional[int] = None
class MiniCPMOPreTrainedModel(Qwen2PreTrainedModel):
config_class = MiniCPMOConfig
class MiniCPMO(MiniCPMOPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.llm = Qwen2ForCausalLM(config)
self.llm.prepare_inputs_for_generation = types.MethodType(prepare_inputs_for_generation, self.llm) # patch llm
self.embed_dim = self.llm.config.hidden_size
# init vision module
if self.config.init_vision:
self.vpm = self.init_vision_module()
self.vision_dim = self.vpm.embed_dim
self.resampler = self.init_resampler(self.embed_dim, self.vision_dim)
# init audio module
if self.config.init_audio:
self.apm = self.init_audio_module()
audio_output_dim = int(self.apm.config.encoder_ffn_dim // 4)
self.audio_avg_pooler = nn.AvgPool1d(self.config.audio_pool_step, stride=self.config.audio_pool_step)
self.audio_projection_layer = MultiModalProjector(in_dim=audio_output_dim, out_dim=self.embed_dim)
self.audio_encoder_layer = -1
# init tts module
if self.config.init_tts:
assert _tts_deps, "please make sure vector_quantize_pytorch and vocos are installed."
self.tts = self.init_tts_module()
self.processor = AutoProcessor.from_pretrained(self.config._name_or_path, trust_remote_code=True)
self.terminators = ["<|im_end|>", "<|endoftext|>"]
self.default_tts_chat_template = "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n<|spk_bos|><|spk|><|spk_eos|><|tts_bos|>' }}{% endif %}"
self.force_no_stop = False
# for stream api
self.reset_session()
def reset_session(self):
self.session_id = None
self.new_user_msg = True
self.llm_generated = False
self.llm_generate_completed = False
self.llm_past_key_values = None
self.audio_past_key_values = None # apm kv cache
def init_tts(
self,
tts_text_tokenizer_path=None,
vocos_ckpt_path=None,
):
"""
load tts tokenizer and vocos
1. try load form local 2. try load from huggingface
"""
from .processing_minicpmo import ChatTTSProcessor
if tts_text_tokenizer_path is None:
tts_text_tokenizer_path = os.path.join(self.config._name_or_path, "assets/chattts_tokenizer")
if not os.path.exists(tts_text_tokenizer_path):
# try from hf model_id
tts_text_tokenizer_path = "openbmb/chattts_tokenizer"
tts_text_tokenizer = BertTokenizerFast.from_pretrained(tts_text_tokenizer_path)
self.tts_processor = ChatTTSProcessor(text_tokenizer=tts_text_tokenizer)
if vocos_ckpt_path is None:
vocos_ckpt_path = os.path.join(self.config._name_or_path, "assets/Vocos.pt")
if not os.path.exists(vocos_ckpt_path):
vocos_ckpt_path = hf_hub_download(repo_id="openbmb/MiniCPM-o-2_6", subfolder="assets", filename="Vocos.pt")
assert os.path.exists(vocos_ckpt_path)
self.vocos = self.initialize_vocos(vocos_ckpt_path)
def initialize_vocos(self, ckpt_path):
feature_extractor = instantiate_class(
args=(),
init={
"class_path": "vocos.feature_extractors.MelSpectrogramFeatures",
"init_args": {"sample_rate": 24000, "n_fft": 1024, "hop_length": 256, "n_mels": 100},
},
)
backbone = instantiate_class(
args=(),
init={
"class_path": "vocos.models.VocosBackbone",
"init_args": {"input_channels": 100, "dim": 512, "intermediate_dim": 1536, "num_layers": 8},
},
)
head = instantiate_class(
args=(),
init={"class_path": "vocos.heads.ISTFTHead", "init_args": {"dim": 512, "n_fft": 1024, "hop_length": 256}},
)
vocos = Vocos(feature_extractor, backbone, head).to("cuda").eval().to(torch.float32)
vocos.load_state_dict(torch.load(ckpt_path, weights_only=True, mmap=True))
return vocos
def init_vision_module(self):
if self.config._attn_implementation == "flash_attention_2":
self.config.vision_config._attn_implementation = "flash_attention_2"
else:
self.config.vision_config._attn_implementation = "eager"
model = SiglipVisionTransformer(self.config.vision_config)
if self.config.drop_vision_last_layer:
model.encoder.layers = model.encoder.layers[:-1]
setattr(model, "embed_dim", model.embeddings.embed_dim)
setattr(model, "patch_size", model.embeddings.patch_size)
return model
def init_resampler(self, embed_dim, vision_dim):
return Resampler(
num_queries=self.config.query_num,
embed_dim=embed_dim,
num_heads=embed_dim // 128,
kv_dim=vision_dim,
adaptive=True,
)
def init_audio_module(self):
model = MiniCPMWhisperEncoder(self.config.audio_config)
return model
def init_tts_module(self):
model = ConditionalChatTTS(self.config.tts_config)
return model
def get_input_embeddings(self):
return self.llm.get_input_embeddings()
def set_input_embeddings(self, value):
self.llm.embed_tokens = value
def get_output_embeddings(self):
return self.llm.lm_head
def set_output_embeddings(self, new_embeddings):
self.llm.lm_head = new_embeddings
def set_decoder(self, decoder):
self.llm = decoder
def get_decoder(self):
return self.llm
def subsequent_chunk_mask(
self,
size: int,
chunk_size: int,
num_left_chunks: int = -1,
device: torch.device = torch.device("cpu"),
num_lookhead: int = 0,
) -> torch.Tensor:
"""Create mask for subsequent steps (size, size) with chunk size,
this is for streaming encoder
Args:
size (int): size of mask
chunk_size (int): size of chunk
num_left_chunks (int): number of left chunks
<0: use full chunk
>=0: use num_left_chunks
device (torch.device): "cpu" or "cuda" or torch.Tensor.device
Returns:
torch.Tensor: mask
Examples:
>>> subsequent_chunk_mask(4, 2)
[[1, 1, 0, 0],
[1, 1, 0, 0],
[1, 1, 1, 1],
[1, 1, 1, 1]]
"""
ret = torch.zeros(size, size, device=device, dtype=torch.bool)
for i in range(size):
if num_left_chunks < 0:
start = 0
else:
start = max((i // chunk_size - num_left_chunks) * chunk_size, 0)
ending = min((i // chunk_size + 1) * chunk_size + num_lookhead, size)
ret[i, start:ending] = True
return ret
def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor):
"""
Computes the output length of the convolutional layers and the output length of the audio encoder
"""
input_lengths_after_cnn = (input_lengths - 1) // 2 + 1
input_lengths_after_pooling = (
input_lengths_after_cnn - self.config.audio_pool_step
) // self.config.audio_pool_step + 1
input_lengths_after_pooling = input_lengths_after_pooling.to(dtype=torch.int32)
return input_lengths_after_cnn, input_lengths_after_pooling
def get_vllm_embedding(self, data):
"""
Compute all visual embeddings, and set into llm embeddings.
Args:
data: Dict
tgt_sizes: image size after patch embedding
pixel_values: image features
image_bound: position of each picture corresponding to input_ids
input_ids: full input_ids, include placeholder
Returns:
embedding with vision, vision_hidden_states
"""
if "vision_hidden_states" not in data:
dtype = self.llm.model.embed_tokens.weight.dtype
device = self.llm.model.embed_tokens.weight.device
tgt_sizes = data["tgt_sizes"]
pixel_values_list = data["pixel_values"]
vision_hidden_states = []
all_pixel_values = []
img_cnt = []
for pixel_values in pixel_values_list:
img_cnt.append(len(pixel_values))
all_pixel_values.extend([i.flatten(end_dim=1).permute(1, 0) for i in pixel_values])
# exist image
if all_pixel_values:
tgt_sizes = [tgt_size for tgt_size in tgt_sizes if isinstance(tgt_size, torch.Tensor)]
tgt_sizes = torch.vstack(tgt_sizes).type(torch.int32)
max_patches = torch.max(tgt_sizes[:, 0] * tgt_sizes[:, 1])
all_pixel_values = torch.nn.utils.rnn.pad_sequence(
all_pixel_values, batch_first=True, padding_value=0.0
)
B, L, _ = all_pixel_values.shape
all_pixel_values = all_pixel_values.permute(0, 2, 1).reshape(B, 3, -1, L)
patch_attn_mask = torch.zeros((B, 1, max_patches), dtype=torch.bool, device=device)
for i in range(B):
patch_attn_mask[i, 0, : tgt_sizes[i][0] * tgt_sizes[i][1]] = True
vision_batch_size = self.config.vision_batch_size
all_pixel_values = all_pixel_values.type(dtype)
if B > vision_batch_size:
hs = []
for i in range(0, B, vision_batch_size):
start_idx = i
end_idx = i + vision_batch_size
tmp_hs = self.vpm(
all_pixel_values[start_idx:end_idx],
patch_attention_mask=patch_attn_mask[start_idx:end_idx],
tgt_sizes=tgt_sizes[start_idx:end_idx],
).last_hidden_state
hs.append(tmp_hs)
vision_embedding = torch.cat(hs, dim=0)
else:
vision_embedding = self.vpm(
all_pixel_values, patch_attention_mask=patch_attn_mask, tgt_sizes=tgt_sizes
).last_hidden_state
vision_embedding = self.resampler(vision_embedding, tgt_sizes)
start = 0
for pixel_values in pixel_values_list:
img_cnt = len(pixel_values)
if img_cnt > 0:
vision_hidden_states.append(vision_embedding[start : start + img_cnt])
start += img_cnt
else:
vision_hidden_states.append([])
else: # no image
if self.training:
dummy_image = torch.zeros((1, 3, 224, 224), device=device, dtype=dtype)
tgt_sizes = torch.Tensor(
[[(224 // self.config.patch_size), math.ceil(224 / self.config.patch_size)]]
).type(torch.int32)
dummy_feature = self.resampler(self.vpm(dummy_image).last_hidden_state, tgt_sizes)
else:
dummy_feature = []
for _ in range(len(pixel_values_list)):
vision_hidden_states.append(dummy_feature)
else:
vision_hidden_states = data["vision_hidden_states"]
if hasattr(self.llm.config, "scale_emb"):
vllm_embedding = self.llm.model.embed_tokens(data["input_ids"]) * self.llm.config.scale_emb
else:
vllm_embedding = self.llm.model.embed_tokens(data["input_ids"])
new_vllm_embedding = vllm_embedding.clone()
vision_hidden_states = [
i.type(vllm_embedding.dtype) if isinstance(i, torch.Tensor) else i for i in vision_hidden_states
]
bs = len(data["input_ids"])
for i in range(bs):
cur_vs_hs = vision_hidden_states[i]
if len(cur_vs_hs) > 0:
cur_vllm_emb = vllm_embedding[i]
cur_image_bound = data["image_bound"][i]
if len(cur_image_bound) > 0:
image_indices = torch.stack(
[torch.arange(r[0], r[1], dtype=torch.long) for r in cur_image_bound]
).to(vllm_embedding.device)
new_vllm_embedding[i] = cur_vllm_emb.scatter(
0,
image_indices.view(-1, 1).repeat(1, cur_vllm_emb.shape[-1]),
cur_vs_hs.view(-1, cur_vs_hs.shape[-1]),
)
elif self.training:
new_vllm_embedding[i] += cur_vs_hs[0].mean() * 0
return new_vllm_embedding, vision_hidden_states
def get_audio_embedding_streaming(self, data):
r"""
Extract audio embeddings in a streaming manner using cached key-value pairs.
This method processes incoming audio features incrementally and stores/updates `past_key_values`
for faster inference on subsequent audio frames. It only supports batch_size=1 and is intended
for streaming scenarios.
Args:
data (dict):
- **"audio_features"** (`torch.FloatTensor`): Input mel-spectrograms of shape `(batch_size, 80, frames)`.
- **"audio_feature_lens"** (List[List[int]]): Lengths of each audio segment for each item in the batch.
Returns:
List[List[torch.Tensor]]: audio embeddings
"""
wavforms = data.get("audio_features", []) # (bs, 80, frames) or [], multi audios need filled in advance
audio_feature_lens_raw = data.get("audio_feature_lens", []) # list, [[x1, x2], [y1], [z1]]
# exist audio
if len(wavforms) > 0:
audio_feature_lens = torch.hstack(audio_feature_lens_raw)
batch_size, _, max_mel_seq_len = wavforms.shape
assert batch_size == 1
max_seq_len = (max_mel_seq_len - 1) // 2 + 1
if self.audio_past_key_values is not None:
cache_length = self.audio_past_key_values[0][0].shape[2]
apm_max_len = self.apm.embed_positions.weight.shape[0]
if cache_length + max_seq_len >= apm_max_len:
logger.warning(
f"audio_past_key_values length {cache_length + max_seq_len} exceed {apm_max_len}, reset."
)
self.audio_past_key_values = None
audio_outputs = self.apm(wavforms, past_key_values=self.audio_past_key_values, use_cache=True)
audio_states = audio_outputs.last_hidden_state # [:, :audio_feat_lengths, :]
self.audio_past_key_values = audio_outputs.past_key_values
audio_embeds = self.audio_projection_layer(audio_states)
audio_embeds = audio_embeds.transpose(1, 2)
audio_embeds = self.audio_avg_pooler(audio_embeds)
audio_embeds = audio_embeds.transpose(1, 2)
_, feature_lens_after_pooling = self._get_feat_extract_output_lengths(audio_feature_lens)
num_audio_tokens = feature_lens_after_pooling
final_audio_embeds = []
idx = 0
for i in range(len(audio_feature_lens_raw)):
target_audio_embeds = []
for _ in range(len(audio_feature_lens_raw[i])):
target_audio_embeds.append(audio_embeds[idx, : num_audio_tokens[idx], :])
idx += 1
final_audio_embeds.append(target_audio_embeds)
return final_audio_embeds
else:
return []
def get_audio_embedding(self, data, chunk_length=-1):
r"""
Extract full audio embeddings with optional chunk-based attention.
This method computes embeddings for all audio frames at once, either using full attention (when
`chunk_length` is -1) or chunk-based attention (when `chunk_length` is a positive number). It does
not use key-value caching and is suitable for non-streaming inference.
Args:
data (dict):
- **"audio_features"** (`torch.FloatTensor`): Input mel-spectrograms of shape `(batch_size, 80, frames)`.
- **"audio_feature_lens"** (List[List[int]]): Lengths of each audio segment for each item in the batch.
chunk_length (int, optional): Determines whether to use full attention (-1) or chunk-based
attention (>0) during embedding computation.
Returns:
List[List[torch.Tensor]]: audio embeddings
"""
wavforms = data.get("audio_features", []) # (bs, 80, frames) or [], multi audios need filled in advance
audio_feature_lens_raw = data.get("audio_feature_lens", []) # list, [[x1, x2], [y1], [z1]]
# exist audio
if len(wavforms) > 0:
audio_feature_lens = torch.hstack(audio_feature_lens_raw)
batch_size, _, max_mel_seq_len = wavforms.shape
max_seq_len = (max_mel_seq_len - 1) // 2 + 1
# Create a sequence tensor of shape (batch_size, max_seq_len)
seq_range = (
torch.arange(0, max_seq_len, dtype=audio_feature_lens.dtype, device=audio_feature_lens.device)
.unsqueeze(0)
.expand(batch_size, max_seq_len)
)
lengths_expand = audio_feature_lens.unsqueeze(1).expand(batch_size, max_seq_len)
# Create mask
padding_mask = seq_range >= lengths_expand # 1 for padded values
audio_attention_mask_ = padding_mask.view(batch_size, 1, 1, max_seq_len).expand(
batch_size, 1, max_seq_len, max_seq_len
)
audio_attention_mask = audio_attention_mask_.to(
dtype=self.apm.conv1.weight.dtype, device=self.apm.conv1.weight.device
)
if chunk_length > 0:
chunk_num_frame = int(chunk_length * 50)
chunk_mask = self.subsequent_chunk_mask(
size=max_seq_len,
chunk_size=chunk_num_frame,
num_left_chunks=-1,
device=audio_attention_mask_.device,
)
audio_attention_mask_ = torch.logical_or(audio_attention_mask_, torch.logical_not(chunk_mask))
audio_attention_mask[audio_attention_mask_] = float("-inf")
audio_states = self.apm(
wavforms, output_hidden_states=True, attention_mask=audio_attention_mask
).hidden_states[self.audio_encoder_layer]
audio_embeds = self.audio_projection_layer(audio_states)
audio_embeds = audio_embeds.transpose(1, 2)
audio_embeds = self.audio_avg_pooler(audio_embeds)
audio_embeds = audio_embeds.transpose(1, 2)
_, feature_lens_after_pooling = self._get_feat_extract_output_lengths(audio_feature_lens)
num_audio_tokens = feature_lens_after_pooling
final_audio_embeds = []
idx = 0
for i in range(len(audio_feature_lens_raw)):
target_audio_embeds = []
for _ in range(len(audio_feature_lens_raw[i])):
target_audio_embeds.append(audio_embeds[idx, : num_audio_tokens[idx], :])
idx += 1
final_audio_embeds.append(target_audio_embeds)
return final_audio_embeds
else:
return []
def get_omni_embedding(self, data, input_embeddings, chunk_length=-1, stream_input=False):
"""
Args:
data:
input_embeddings:
chunk_length: whisper use full attention or chunk attention
stream_input: use streaming audio embedding
Returns:
final embeddings with audio feature
"""
if stream_input:
audio_embeddings = self.get_audio_embedding_streaming(data)
else:
audio_embeddings = self.get_audio_embedding(data, chunk_length)
bs = len(input_embeddings)
if len(data.get("audio_features", [])) > 0:
assert len(audio_embeddings) == len(input_embeddings)
if len(audio_embeddings) > 0:
audio_bounds = data["audio_bounds"]
if self.config.chunk_input:
for i in range(bs):
audio_embs = torch.cat(audio_embeddings[i], dim=0).to(
device=input_embeddings.device, dtype=input_embeddings.dtype
)
audio_start_pos = 0
for bound in audio_bounds[i]:
audio_len = bound[1] - bound[0]
input_embeddings[0, bound[0] : bound[1]] = audio_embs[
audio_start_pos : audio_start_pos + audio_len, :
]
audio_start_pos += audio_len
else:
for i in range(bs):
audio_embs = audio_embeddings[i]
bounds = audio_bounds[i]
for embs, bound in zip(audio_embs, bounds):
audio_indices = torch.arange(bound[0], bound[1], dtype=torch.long).to(
input_embeddings.device
)
if embs.shape[0] != len(audio_indices):
raise ValueError(
f"Shape mismatch: Trying to assign embeddings of shape {embs.shape} "
f"to input indices of length {len(audio_indices)}"
)
input_embeddings[i, audio_indices] = embs.to(input_embeddings.dtype)
elif self.training:
for i in range(bs):
# dummy audio_embeddings
if len(audio_embeddings)>0:
input_embeddings = input_embeddings + audio_embeddings[0].mean() * 0
return input_embeddings
def forward(self, data, **kwargs):
vllm_embedding, vision_hidden_states = self.get_vllm_embedding(data)
if self.config.init_audio:
vllm_embedding = self.get_omni_embedding(
data, input_embeddings=vllm_embedding, chunk_length=self.config.audio_chunk_length
)
position_ids = data["position_ids"]
if position_ids.dtype != torch.int64:
position_ids = position_ids.long()
# compatible with llama factory
for key in ["input_ids", "inputs_embeds", "position_ids"]:
if key in kwargs:
del kwargs[key]
return self.llm(input_ids=None, position_ids=position_ids, inputs_embeds=vllm_embedding, **kwargs)
def _decode(self, inputs_embeds, tokenizer, attention_mask, **kwargs):
terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators]
outputs = self.llm.generate(
inputs_embeds=inputs_embeds,
pad_token_id=0,
eos_token_id=terminators,
attention_mask=attention_mask,
output_hidden_states=True,
return_dict_in_generate=True,
**kwargs,
)
return outputs
def _decode_stream(self, inputs_embeds, tokenizer, **kwargs):
terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators]
streamer = TextIteratorStreamer(tokenizer=tokenizer)
generation_kwargs = {
"inputs_embeds": inputs_embeds,
"pad_token_id": 0,
"eos_token_id": terminators,
"streamer": streamer,
}
generation_kwargs.update(kwargs)
thread = Thread(target=self.llm.generate, kwargs=generation_kwargs)
thread.start()
return streamer
def _decode_text(self, result_ids, tokenizer):
terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators]
result_text = []
for result in result_ids:
result = result[result != 0]
if result[0] == tokenizer.bos_id:
result = result[1:]
if result[-1] in terminators:
result = result[:-1]
result_text.append(tokenizer.decode(result))
return result_text
def get_sys_prompt(self, ref_audio=None, mode="default", language="zh"):
"""
Choose different system prompts according to different tasks
Args:
ref_audio: if ref_audio is not None, will use the voice cloning prompts, and the voice
generated by the model will refer to the timbre of ref audio
mode:
"default": default system prompt and not refer to any task
"omni": input video and audio simultaneously
"audio_assistant": Default voice-only mode, the model will use the ref_audio's voice to reply user's question as a helpful assistant.
"audio_roleplay": Roleplay voice-only mode, the model will use the ref_audio's voice to reply, and also role-play the character based on the audio prompt.
"voice_cloning": TTS mode, the model will clone the voice of ref_audio.
language: prompts language, the model has the ability to automatically select the response language
based on the question language
Returns:
"""
if ref_audio is not None:
assert isinstance(ref_audio, np.ndarray), "ref_audio error"
if mode == "omni":
if language == "zh":
sys_prompt = "你是一个AI助手。你能接受视频,音频和文本输入并输出语音和文本。"
vc_prompt_prefix = sys_prompt + "模仿输入音频中的声音特征。"
vc_prompt_suffix = "作为助手,你将使用这种声音风格说话。"
else:
sys_prompt = "You are a helpful assistant. You can accept video, audio and text input and output voice and text. "
vc_prompt_prefix = sys_prompt + "Clone the voice in the provided audio prompt."
vc_prompt_suffix = "As an assistant, you will speak using this voice style."
if ref_audio is not None:
sys_msgs = {"role": "user", "content": [vc_prompt_prefix, ref_audio, vc_prompt_suffix]}
else:
sys_msgs = {"role": "user", "content": [sys_prompt]}
return sys_msgs
elif mode == "audio_assistant":
if language == "zh":
vc_prompt_prefix = "模仿输入音频中的声音特征。"
vc_prompt_suffix = "作为助手,你将使用这种声音风格说话。"
else:
vc_prompt_prefix = "Clone the voice in the provided audio prompt."
vc_prompt_suffix = "As an assistant, you will speak using this voice style."
if ref_audio is not None:
sys_msgs = {"role": "user", "content": [vc_prompt_prefix, ref_audio, vc_prompt_suffix]}
else:
logger.warning(
"Warning: ref_audio is None, speech generation will be performed based on the default voice."
)
sys_msgs = {"role": "user", "content": ["Use the <reserved_53> voice.", vc_prompt_suffix]}
return sys_msgs
elif mode == "audio_roleplay":
if language == "zh":
vc_prompt_prefix = "模仿输入音频中的声音特征。"
vc_prompt_suffix = "假装你是上述音频中的人物,与我进行对话。"
else:
vc_prompt_prefix = "Clone the voice in the provided audio prompt."
vc_prompt_suffix = "Try to role-play the character based on the audio prompt above."
if ref_audio is not None:
sys_msgs = {"role": "user", "content": [vc_prompt_prefix, ref_audio, vc_prompt_suffix]}
else:
print("Warning: ref_audio is None, speech generation will be performed based on the default voice.")
sys_msgs = {"role": "user", "content": ["Use the <reserved_53> voice.", vc_prompt_suffix]}
return sys_msgs
elif mode == "voice_cloning":
if language == "zh":
vc_prompt_prefix = "模仿输入音频中的声音特征。"
else:
vc_prompt_prefix = "Clone the voice in the provided audio prompt."
if ref_audio is not None:
sys_msgs = {"role": "user", "content": [vc_prompt_prefix, ref_audio]}
else:
raise ValueError("ref_audio con't be None in voice_cloning mode.")
return sys_msgs
else:
sys_prompt = "You are a helpful assistant. You can accept audio and text input and output voice and text."
sys_msgs = {"role": "user", "content": [sys_prompt]}
return sys_msgs
def generate(
self,
input_ids=None,
pixel_values=None,
tgt_sizes=None,
audio_features=[],
audio_feature_lens=None,
image_bound=None,
audio_bounds=None,
spk_bounds=None,
attention_mask=None,
tokenizer=None,
vision_hidden_states=None,
stream=False,
**kwargs,
):
assert input_ids is not None
assert len(input_ids) == len(pixel_values)
model_inputs = {
"input_ids": input_ids,
"audio_features": audio_features,
"audio_feature_lens": audio_feature_lens,
"image_bound": image_bound,
"audio_bounds": audio_bounds,
"spk_bounds": spk_bounds,
}
if vision_hidden_states is None:
model_inputs["pixel_values"] = pixel_values
model_inputs["tgt_sizes"] = tgt_sizes
else:
model_inputs["vision_hidden_states"] = vision_hidden_states
model_output = {}
with torch.inference_mode():
model_inputs["inputs_embeds"], vision_hidden_states = self.get_vllm_embedding(model_inputs)
model_inputs["inputs_embeds"] = self.get_omni_embedding(
model_inputs,
input_embeddings=model_inputs["inputs_embeds"],
chunk_length=self.config.audio_chunk_length,
)
if stream:
result = self._decode_stream(model_inputs["inputs_embeds"], tokenizer, **kwargs)
# if stream return TextIteratorStreamer and output is empty
outputs = {}
else:
outputs = self._decode(model_inputs["inputs_embeds"], tokenizer, attention_mask, **kwargs)
result = self._decode_text(outputs.sequences, tokenizer)
return result, outputs
def chat(
self,
image=None,
msgs=None,
tokenizer=None,
processor=None,
vision_hidden_states=None,
max_new_tokens=2048,
min_new_tokens=0,
sampling=True,
max_inp_length=32768,
stream=False,
chunk_input=True,
omni_input=False,
max_slice_nums=None,
use_image_id=None,
use_tts_template=False,
generate_audio=False,
return_spk_embed=False,
return_dict=False,
output_audio_path=None,
**kwargs,
):
"""
Unified chat function
Args:
image: use for batch_size=1 vqa, It is not recommended to continue to use this parameter
msgs: the input chat msgs, support text: (string) / image: (PIL.Image) / audio (numpy.ndarray)
tokenizer: tokenizer for llm
processor: if None, use the default processor
max_new_tokens: the maximum length of the generation
min_new_tokens: the minimum length of the generation
sampling: whether to use sampling decoding or beam search decoding
max_inp_length: the maximum length of input
stream: whether to return generator, only used when tts is not required
chunk_input: whether to split audio into 1s chunks
omni_input: determine whether it is omni mode
max_slice_nums: control the maximum number of image slices
use_image_id: for video understanding or omni understanding, use_image_id should be False
use_tts_template: if the msgs contain audio, use_tts_template should be True
generate_audio: whether to generate audio output, only used when return_dict=True
return_spk_embed: whether to return spk embedding, only used when return_dict=True
return_dict: whether to return dict
output_audio_path: audio save path when generate_audio
**kwargs:
"""
if isinstance(msgs[0], list):
batched = True
else:
batched = False
if generate_audio or return_spk_embed:
return_dict = True
msgs_list = msgs
images_list = image
if batched is False:
images_list, msgs_list = [images_list], [msgs_list]
else:
assert images_list is None, "Please integrate image to msgs when using batch inference."
images_list = [None] * len(msgs_list)
assert len(images_list) == len(msgs_list), "The batch dim of images_list and msgs_list should be the same."
if processor is None:
if self.processor is None:
self.processor = AutoProcessor.from_pretrained(self.config._name_or_path, trust_remote_code=True)
processor = self.processor
assert (
self.config.query_num == processor.image_processor.image_feature_size
), "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
assert (
self.config.patch_size == processor.image_processor.patch_size
), "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
assert (
self.config.use_image_id == processor.image_processor.use_image_id
), "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
assert (
self.config.slice_config.max_slice_nums == processor.image_processor.max_slice_nums
), "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
assert (
self.config.slice_mode == processor.image_processor.slice_mode
), "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
prompts_lists = []
input_images_list = []
input_audios_list = []
audio_parts_list = []
for image, msgs in zip(images_list, msgs_list):
if isinstance(msgs, str):
msgs = json.loads(msgs)
copy_msgs = deepcopy(msgs)
assert len(msgs) > 0, "msgs is empty"
assert sampling or not stream, "if use stream mode, make sure sampling=True"
if image is not None and isinstance(copy_msgs[0]["content"], str):
copy_msgs[0]["content"] = [image, copy_msgs[0]["content"]]
images = []
audios = []
audio_parts = []
for i, msg in enumerate(copy_msgs):
role = msg["role"]
content = msg["content"]
assert role in ["system", "user", "assistant"]
if i == 0:
assert role in ["user", "system"], "The role of first msg should be user"
if isinstance(content, str):
content = [content]
cur_msgs = []
for c in content:
if isinstance(c, Image.Image):
images.append(c)
cur_msgs.append("(<image>./</image>)")
elif isinstance(c, np.ndarray): # audio
audios.append(c)
audio_parts.append(i)
cur_msgs.append("(<audio>./</audio>)")
use_tts_template = True
elif isinstance(c, str):
cur_msgs.append(c)
if omni_input:
msg["content"] = "".join(cur_msgs)
else:
msg["content"] = "\n".join(cur_msgs)
prompts_lists.append(
processor.tokenizer.apply_chat_template(
copy_msgs,
tokenize=False,
add_generation_prompt=True,
chat_template=self.default_tts_chat_template if use_tts_template else None,
)
)
input_images_list.append(images)
input_audios_list.append(audios)
audio_parts_list.append(audio_parts)
inputs = processor(
prompts_lists,
input_images_list,
input_audios_list,
audio_parts_list,
max_slice_nums=max_slice_nums,
use_image_id=use_image_id,
chunk_input=chunk_input,
return_tensors="pt",
max_length=max_inp_length,
).to(self.device)
if sampling:
generation_config = {
"top_p": 0.8,
"top_k": 100,
"temperature": 0.7,
"do_sample": True,
"repetition_penalty": 1.05,
}
else:
generation_config = {
"num_beams": 3,
"repetition_penalty": 1.2,
}
if min_new_tokens > 0:
generation_config["min_new_tokens"] = min_new_tokens
generation_config.update((k, kwargs[k]) for k in generation_config.keys() & kwargs.keys())
inputs.pop("image_sizes")
with torch.inference_mode():
res, outputs = self.generate(
**inputs,
tokenizer=tokenizer,
max_new_tokens=max_new_tokens,
vision_hidden_states=vision_hidden_states,
stream=stream,
**generation_config,
)
if stream:
def stream_gen():
for text in res:
for term in self.terminators:
text = text.replace(term, "")
yield text
if return_dict:
return OmniOutput(text=stream_gen())
else:
return stream_gen()
else:
spk_embeds = wav_numpy = sr = None
if batched:
answer = res
else:
answer = res[0]
if use_tts_template and generate_audio:
mel_spec = self._generate_mel_spec(inputs, outputs, answer)
wav_numpy, sr = self.decode_mel_to_audio(mel_spec, output_audio_path)
if return_spk_embed:
spk_embeds = self._get_last_spk_embeds(inputs, outputs)
if isinstance(answer, list):
answer = [i.replace(tokenizer.tts_end, "") for i in answer]
else:
answer = answer.replace(tokenizer.tts_end, "")
if return_dict:
return OmniOutput(text=answer, spk_embeds=spk_embeds, audio_wav=wav_numpy, sampling_rate=sr)
else:
return answer
@torch.inference_mode()
def streaming_prefill(
self,
session_id,
msgs,
tokenizer,
omni_input=True,
max_slice_nums=None,
ls_temperature=1.0,
**kwargs,
):
"""
Streaming video/audio input and output audio stream, Only support batch_size=1
Args:
session_id: Note: new connection should use a new session_id
"""
assert session_id is not None
if self.session_id is None or session_id != self.session_id: # new session
self.is_first = True
else:
self.is_first = False
images = []
audios = []
assert len(msgs) == 1
copy_msgs = deepcopy(msgs)
msg = copy_msgs[0]
assert msg["role"] in ["system", "user", "assistant"]
content = msg["content"]
cur_msgs = []
for j, c in enumerate(content):
if isinstance(c, Image.Image):
images.append(c)
cur_msgs.append("(<image>./</image>)")
elif isinstance(c, np.ndarray): # audio
audios.append(c)
cur_msgs.append("(<audio>./</audio>)")
elif isinstance(c, str):
cur_msgs.append(c)
else:
logger.error("Invalid content type:", c)
cur_contents = "".join(cur_msgs) if omni_input else "\n".join(omni_input)
if not self.is_first and self.new_user_msg and msg["role"] == "user": # new user add im_start
if self.llm_generated:
if self.llm_generate_completed:
msg["content"] = "<|im_end|>\n<|im_start|>user\n" + cur_contents
else: # break llm gen, add tts_eos
msg["content"] = "<|tts_eos|><|im_end|>\n<|im_start|>user\n" + cur_contents
else:
msg["content"] = "<|im_start|>user\n" + cur_contents
self.new_user_msg = False
else:
msg["content"] = cur_contents
if msg["role"] in ["system", "assistant"]:
self.new_user_msg = True
self.audio_past_key_values = None # apm kv cache
if self.is_first:
# init pask_key_values
logger.info(f"new session_id: {session_id}, reset kv cache")
self.reset_session()
self.session_id = session_id
prompt = tokenizer.apply_chat_template(
copy_msgs, tokenize=False, add_generation_prompt=False, chat_template=self.default_tts_chat_template
)
add_special_tokens = True # add bos
else:
prompt = copy_msgs[0]["content"]
add_special_tokens = False
model_inputs = self.processor(
[prompt],
[images],
[audios],
max_slice_nums=1 if max_slice_nums is None else max_slice_nums,
use_image_id=False,
chunk_input=True,
return_tensors="pt",
max_length=None,
sampling_rate=16000,
add_special_tokens=add_special_tokens,
).to(self.device)
# 1. prepare input embeddings
model_inputs["inputs_embeds"], _ = self.get_vllm_embedding(model_inputs)
# get audio embedding with audio_past_key_values
inputs_embeds = self.get_omni_embedding(
model_inputs, input_embeddings=model_inputs["inputs_embeds"], stream_input=True
)
if self.is_first:
# clean audio_past_key_values after first prefill
self.audio_past_key_values = None
if self.llm_past_key_values is not None:
cache_length = self.llm_past_key_values[0][0].shape[2]
else:
cache_length = 0
attention_mask = torch.ones((1, cache_length + inputs_embeds.shape[1]), dtype=torch.bool, device=self.device)
# 2. do prefill and predict listen/speak label
outputs = self.llm(
past_key_values=self.llm_past_key_values,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
position_ids=None, # position_ids,
use_cache=True,
return_dict=True,
)
self.llm_past_key_values = outputs["past_key_values"]
return
@torch.inference_mode()
def streaming_generate(
self,
session_id,
tokenizer,
max_new_tokens=512,
min_new_tokens=0,
sampling=True,
generate_audio=True,
enable_regenerate=False,
**kwargs,
):
"""
Streaming video/audio input and output audio stream
Args:
"""
if sampling:
generation_config = {
"top_p": 0.8,
"top_k": 100,
"temperature": 0.7,
"do_sample": True,
"repetition_penalty": 1.05,
}
else:
generation_config = {
"num_beams": 3,
"repetition_penalty": 1.2,
}
generation_config["min_new_tokens"] = min_new_tokens
generation_config.update((k, kwargs[k]) for k in generation_config.keys() & kwargs.keys())
# do generate
# reset buffer
self.new_user_msg = True
self.llm_generated = True
self.llm_generate_completed = False
self.audio_past_key_values = None # apm kv cache
terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators]
generate_prompt = "<|im_end|>\n<|im_start|>assistant\n<|spk_bos|><|spk|><|spk_eos|><|tts_bos|>"
input_ids = tokenizer(generate_prompt, return_tensors="pt", add_special_tokens=False)["input_ids"].cuda()
spk_start_idx = torch.where(input_ids[0] == tokenizer.spk_start_id)[0]
spk_end_idx = torch.where(input_ids[0] == tokenizer.spk_end_id)[0]
spk_bounds = [
torch.hstack([(spk_start_idx + 1).unsqueeze(-1), spk_end_idx.unsqueeze(-1)])
] # List[Tensor], (1,2)
cache_length = past_length = self.llm_past_key_values[0][0].shape[2]
attention_mask = torch.ones((1, cache_length + input_ids.shape[1]), dtype=torch.bool, device=self.device)
generation_config["max_new_tokens"] = max_new_tokens
streamer = self.llm_generate_chunk(input_ids, attention_mask, tokenizer, terminators, generation_config)
if generate_audio:
result = self._generate_mel_spec_audio_streaming(
spk_bounds, streamer, output_chunk_size=25, enable_regenerate=enable_regenerate
)
return result
else:
return streamer
def llm_generate_chunk(self, input_ids, attention_mask, tokenizer, terminators, generation_config):
def check_uncompleted_token(ids):
cur_text = tokenizer.decode(ids)
end = len(ids)
while cur_text[-1] == "�":
end -= 1
if end == 0:
break
cur_text = tokenizer.decode(ids[:end])
return end
max_new_tokens = int(generation_config.pop("max_new_tokens", 2048))
new_len = 0
first_chunk = True
eos = False
left_ids = None
while True:
outputs = self.llm.generate(
input_ids=input_ids,
past_key_values=self.llm_past_key_values,
attention_mask=attention_mask,
use_cache=True,
max_new_tokens=3, # reduce first token delay
pad_token_id=0,
output_hidden_states=True if first_chunk else False,
return_dict_in_generate=True,
eos_token_id=terminators,
**generation_config,
)
if outputs.sequences[0, -1] in terminators:
eos = True
input_len = input_ids.shape[1]
cur_ids = outputs.sequences[:, input_len:]
new_len += cur_ids.shape[1]
if left_ids is not None and left_ids.shape[1] > 0:
cur_ids = torch.cat([left_ids, cur_ids], dim=1)
end = check_uncompleted_token(cur_ids[0])
left_ids = cur_ids[:, end:]
cur_ids = cur_ids[:, :end]
text = self._decode_text(cur_ids, tokenizer)[0] if end > 0 else ""
self.llm_past_key_values = outputs.past_key_values
input_ids = outputs.sequences[:, -1:]
cache_length = past_length = self.llm_past_key_values[0][0].shape[2]
attention_mask = torch.ones((1, cache_length + input_ids.shape[1]), dtype=torch.bool, device=self.device)
res = {"text": text}
if first_chunk:
res["hidden_states"] = outputs.hidden_states
first_chunk = False
yield res
if eos:
self.llm_generate_completed = True
break
if new_len >= max_new_tokens:
logger.debug(f"LLM generation {new_len} exceeds max_new_tokens({max_new_tokens}), break.")
break
def prepare_tts_text(self, text):
tts_tokens = self.tts_processor.text_tokenizer.encode(text, add_special_tokens=False)
tts_tokens_len = len(tts_tokens)
if tts_tokens_len < self.tts.streaming_text_reserved_len:
num_pad_tokens = self.tts.streaming_text_reserved_len - tts_tokens_len
pad_str = "[Etts]" + "[PAD]" * (num_pad_tokens - 1)
else:
tts_tokens = tts_tokens[0 : self.tts.streaming_text_reserved_len]
tts_tokens_len = len(tts_tokens)
text = self.tts_processor.text_tokenizer.decode(tts_tokens, add_special_tokens=False)
pad_str = ""
spk_emb_placeholder_tts = "[spk_emb]" * self.tts.num_spk_embs
new_text_tts = f"[Stts]{spk_emb_placeholder_tts}{text}{pad_str}[Ptts]"
return new_text_tts, tts_tokens_len
def get_tts_text_start_token_ids(self):
text = "[Stts]" + "[spk_emb]" * self.tts.num_spk_embs
tts_input_ids = self.tts_processor.text_tokenizer(text, return_tensors="pt", add_special_tokens=False)[
"input_ids"
].cuda()
return tts_input_ids
def _build_streaming_mask(self, tts_tokens_len):
tts_sequence_full_length = (
1 + self.tts.num_spk_embs * self.tts.use_speaker_embedding + self.tts.streaming_text_reserved_len + 1
)
streaming_attention_mask = torch.zeros(tts_sequence_full_length, dtype=torch.int8)
streaming_attention_mask[0 : 1 + 1 + tts_tokens_len + 1] = 1
streaming_attention_mask[-1] = 1
return streaming_attention_mask
def _get_last_spk_embeds(self, inputs, outputs):
last_hidden_states = [hs[-1] for hs in outputs.hidden_states]
# batch = 1
last_hidden_states = torch.vstack([i[0] for i in last_hidden_states])
# last spk
spk_bound = inputs["spk_bounds"][0][-1]
spk_embeds = last_hidden_states[spk_bound[0] : spk_bound[1]]
return spk_embeds
def _generate_mel_spec(self, inputs, outputs, text, output_chunk_size=25, tts_max_new_tokens=2048):
spk_embeds = self._get_last_spk_embeds(inputs, outputs)
text = text.split("<|tts_bos|>")[-1]
gen_text = text.split("<|tts_eos|>")[0]
tts_text, tts_token_lens = self.prepare_tts_text(gen_text)
tts_inputs = self.tts_processor.text_tokenizer.encode(tts_text, add_special_tokens=False)
tts_input_ids = torch.Tensor(tts_inputs).unsqueeze(0).to("cuda", dtype=torch.long)
streaming_tts_text_mask = self._build_streaming_mask(tts_token_lens).to(device=self.tts.device)
logits_warpers, logits_processors = gen_logits(
num_code=626, top_P=self.tts.top_p, top_K=self.tts.top_k, repetition_penalty=self.tts.repetition_penalty
)
condition_length = (
1 + self.tts.use_speaker_embedding * self.tts.num_spk_embs + self.tts.streaming_text_reserved_len + 1
)
dtype = self.tts.emb_text.weight.dtype
emb = torch.zeros(1, condition_length, self.tts.num_vq, dtype=dtype, device=self.tts.device)
past_key_values = [
(
torch.zeros(
1,
self.tts.config.num_attention_heads,
condition_length - 1,
self.tts.config.hidden_size // self.tts.config.num_attention_heads,
dtype=emb.dtype,
device=self.tts.device,
),
torch.zeros(
1,
self.tts.config.num_attention_heads,
condition_length - 1,
self.tts.config.hidden_size // self.tts.config.num_attention_heads,
dtype=emb.dtype,
device=self.tts.device,
),
)
for _ in range(self.tts.config.num_hidden_layers)
]
audio_input_ids = torch.zeros(1, condition_length, self.tts.num_vq, dtype=torch.long, device=self.tts.device)
eos_lab = False
for chunk_idx in range(math.ceil(emb.shape[1] / self.tts.streaming_text_chunk_size)):
if chunk_idx == 0:
begin = chunk_idx * self.tts.streaming_text_chunk_size + 0
end = (
(chunk_idx + 1) * self.tts.streaming_text_chunk_size
+ 1
+ self.tts.use_speaker_embedding * self.tts.num_spk_embs
)
else:
begin = (
chunk_idx * self.tts.streaming_text_chunk_size
+ 1
+ self.tts.use_speaker_embedding * self.tts.num_spk_embs
)
end = min(
(chunk_idx + 1) * self.tts.streaming_text_chunk_size
+ 1
+ self.tts.use_speaker_embedding * self.tts.num_spk_embs,
condition_length - 1,
)
if end - begin > 0:
text_input_ids = tts_input_ids[:, begin:end]
position_ids = torch.arange(begin, end, dtype=torch.long, device=self.tts.device).unsqueeze(0)
if begin == 0:
past_key_values = self.tts.prefill_text(
input_ids=text_input_ids,
position_ids=position_ids,
past_key_values=past_key_values,
lm_spk_emb_last_hidden_states=spk_embeds,
)
else:
past_key_values = self.tts.prefill_text(
input_ids=text_input_ids, position_ids=position_ids, past_key_values=past_key_values
)
outputs = self.tts.generate(
input_ids=audio_input_ids,
past_key_values=past_key_values,
streaming_tts_text_mask=streaming_tts_text_mask,
max_new_token=output_chunk_size,
force_no_stop=self.force_no_stop,
temperature=torch.tensor([0.1, 0.3, 0.1, 0.3], dtype=torch.float, device=self.tts.device),
eos_token=torch.tensor([625], dtype=torch.long, device=self.tts.device),
logits_warpers=logits_warpers,
logits_processors=logits_processors,
)
audio_input_ids = outputs.audio_input_ids
past_key_values = outputs.past_key_values
if outputs.finished:
logger.debug("Generation finished.")
eos_lab = True
break
if not eos_lab:
logger.debug("eos_lab False, Generation continue.")
while True:
outputs = self.tts.generate(
input_ids=audio_input_ids,
past_key_values=past_key_values,
streaming_tts_text_mask=streaming_tts_text_mask,
max_new_token=output_chunk_size,
force_no_stop=self.force_no_stop,
temperature=torch.tensor([0.1, 0.3, 0.1, 0.3], dtype=torch.float, device=self.tts.device),
eos_token=torch.tensor([625], dtype=torch.long, device=self.tts.device),
logits_warpers=logits_warpers,
logits_processors=logits_processors,
)
audio_input_ids = outputs.audio_input_ids
past_key_values = outputs.past_key_values
if outputs.finished:
logger.debug("Generation finished.")
break
if outputs.new_ids.shape[1] > tts_max_new_tokens:
logger.debug(f"Generation length > {tts_max_new_tokens}, stopped.")
break
mel_spec = self.tts.decode_to_mel_specs(outputs.new_ids)
return mel_spec
def _linear_overlap_add2_wav(self, frames: List[torch.Tensor], overlap: int):
"""
Merge two audio waveforms with smooth in streaming audio generation.
Borrowed some codes from `https://github.com/huggingface/transformers/blob/main/src/transformers/models/encodec/modeling_encodec.py`
"""
assert len(frames) == 2
device = frames[0].device
dtype = frames[0].dtype
# shape = frames[0].shape[:-1]
frame0_length = frames[0].shape[-1]
frame1_length = frames[1].shape[-1]
total_size = frame0_length + frame1_length - overlap
weight_len = max(frame0_length, frame1_length) + overlap
t = torch.linspace(0, 1, weight_len + 2, device=device, dtype=dtype)[1:-1]
weight = 0.5 - (t - 0.5).abs()
sum_weight = torch.zeros(total_size, device=device, dtype=dtype)
out = torch.zeros(total_size, device=device, dtype=dtype)
offset: int = 0
out[offset : offset + frame0_length] += weight[-frame0_length:] * frames[0]
sum_weight[offset : offset + frame0_length] += weight[-frame0_length:]
offset += frame0_length - overlap
out[offset : offset + frame1_length] += weight[:frame1_length] * frames[1]
sum_weight[offset : offset + frame1_length] += weight[:frame1_length]
assert sum_weight.min() > 0
out = out / sum_weight
return out[:frame0_length], out[frame0_length:]
def _generate_mel_spec_audio_streaming(
self,
spk_bounds,
streamer,
output_chunk_size=25,
spk_embeds=None,
prev_seg_text_ids=None,
prev_seg_text_left="",
prev_seg_audio_ids=None,
enable_regenerate=False,
):
# get spk_embedding
gen_text = ""
tts_text = ""
new_segment_gen = False
if spk_embeds is None:
spk_bound = spk_bounds[0][-1]
r = next(streamer)
txt = r["text"]
gen_text += txt.split("<|tts_eos|>")[0]
tts_text, tts_token_lens = self.prepare_tts_text(gen_text)
last_hidden_states = r["hidden_states"][0][-1][0] # output: (input_seq_len, dim)
spk_embeds = last_hidden_states[spk_bound[0] : spk_bound[1]]
# init past_key_values
logits_warpers, logits_processors = gen_logits(
num_code=626, top_P=self.tts.top_p, top_K=self.tts.top_k, repetition_penalty=self.tts.repetition_penalty
)
condition_length = (
1 + self.tts.use_speaker_embedding * self.tts.num_spk_embs + self.tts.streaming_text_reserved_len + 1
)
tts_start_token_len = 1 + self.tts.use_speaker_embedding * self.tts.num_spk_embs
dtype = self.tts.emb_text.weight.dtype
past_key_values = [
(
torch.zeros(
1,
self.tts.config.num_attention_heads,
condition_length - 1,
self.tts.config.hidden_size // self.tts.config.num_attention_heads,
dtype=dtype,
device=self.tts.device,
),
torch.zeros(
1,
self.tts.config.num_attention_heads,
condition_length - 1,
self.tts.config.hidden_size // self.tts.config.num_attention_heads,
dtype=dtype,
device=self.tts.device,
),
)
for _ in range(self.tts.config.num_hidden_layers)
]
audio_input_ids = torch.zeros(1, condition_length, self.tts.num_vq, dtype=torch.long, device=self.tts.device)
# prefill prev segment for smooth
chunk_idx = 0
new_ids_len = 0
prev_text_len = 0
if prev_seg_text_ids is not None and prev_seg_audio_ids is not None:
tts_token_lens = prev_seg_text_ids.shape[1]
# assert tts_token_lens % self.tts.streaming_text_chunk_size == 0
streaming_tts_text_mask = self._build_streaming_mask(tts_token_lens).to(device=self.tts.device)
position_ids = torch.arange(
0, tts_token_lens + tts_start_token_len, dtype=torch.long, device=self.tts.device
).unsqueeze(0)
text_input_ids = self.get_tts_text_start_token_ids()
text_input_ids = torch.cat([text_input_ids, prev_seg_text_ids], dim=1)
past_key_values = self.tts.prefill_text(
input_ids=text_input_ids,
position_ids=position_ids,
past_key_values=past_key_values,
lm_spk_emb_last_hidden_states=spk_embeds,
)
past_key_values = self.tts.prefill_audio_ids(
input_ids=prev_seg_audio_ids[:, :-1, :],
# not prefill last id, which will be input_id of next generation
past_key_values=past_key_values,
streaming_tts_text_mask=streaming_tts_text_mask,
)
# update init
chunk_idx += int(tts_token_lens / self.tts.streaming_text_chunk_size)
audio_input_ids = torch.cat([audio_input_ids, prev_seg_audio_ids], dim=1)
text = self.tts_processor.text_tokenizer.decode(prev_seg_text_ids[0].tolist(), add_special_tokens=False)
gen_text += text
gen_text += prev_seg_text_left
prev_text_len = len(gen_text) # takecare the position
new_ids_len += prev_seg_audio_ids.shape[1]
prev_wav = None
eos_lab = False
stop = False
shift_len = 180
voice_checker = VoiceChecker()
number_converter = NumberToTextConverter()
lang = None
gen_text_raw = gen_text
for t, r in enumerate(streamer):
t += 1
txt = r["text"]
txt = txt.split("<|tts_eos|>")[0]
gen_text_raw += txt
if t == 1 and txt == "" and prev_seg_text_ids is not None:
logger.warning("New segment is empty, generation finished.")
return
if t <= 2: # do just one time, more token greater certainty
lang = number_converter.detect_language(gen_text_raw)
gen_text += number_converter.replace_numbers_with_text(txt, lang).replace("*", "") # markdown **
# TODO speed up
tts_text, tts_token_lens = self.prepare_tts_text(gen_text)
if tts_token_lens >= self.tts.streaming_text_reserved_len - shift_len:
end_c = sentence_end(txt)
if end_c:
end_c_idx = gen_text.rfind(end_c)
assert end_c_idx != -1
text_left = gen_text[end_c_idx + 1 :]
gen_text = gen_text[: end_c_idx + 1]
tts_text, tts_token_lens = self.prepare_tts_text(gen_text)
new_segment_gen = True
logger.debug(
f"tts_text tokens {tts_token_lens} exceed {self.tts.streaming_text_reserved_len - shift_len}, starting a new segment generation"
)
break
if tts_token_lens >= (chunk_idx + 1) * self.tts.streaming_text_chunk_size:
# do prefill and generate
if chunk_idx == 0:
begin = 0
end = (chunk_idx + 1) * self.tts.streaming_text_chunk_size + tts_start_token_len
else:
begin = chunk_idx * self.tts.streaming_text_chunk_size + tts_start_token_len
end = min(
(chunk_idx + 1) * self.tts.streaming_text_chunk_size + tts_start_token_len, condition_length - 1
)
tts_input_ids = self.tts_processor.text_tokenizer(
tts_text, return_tensors="pt", add_special_tokens=False
)["input_ids"].cuda()
text_input_ids = tts_input_ids[:, begin:end]
streaming_tts_text_mask = self._build_streaming_mask(tts_token_lens).to(device=self.tts.device)
position_ids = torch.arange(begin, end, dtype=torch.long, device=self.tts.device).unsqueeze(0)
past_key_values = self.tts.prefill_text(
input_ids=text_input_ids,
position_ids=position_ids,
past_key_values=past_key_values,
lm_spk_emb_last_hidden_states=spk_embeds if chunk_idx == 0 else None,
)
outputs = self.tts.generate(
input_ids=audio_input_ids,
past_key_values=past_key_values,
streaming_tts_text_mask=streaming_tts_text_mask,
max_new_token=output_chunk_size,
force_no_stop=self.force_no_stop,
temperature=torch.tensor([0.1, 0.3, 0.1, 0.3], dtype=torch.float, device=self.tts.device),
eos_token=torch.tensor([625], dtype=torch.long, device=self.tts.device),
logits_warpers=logits_warpers,
logits_processors=logits_processors,
)
audio_input_ids = (
outputs.audio_input_ids
) # [1,seq_len,4] seq_len=tts.streaming_text_reserved_len + 3 + len(new_ids)
past_key_values = outputs.past_key_values
chunk_idx += 1
mel_spec = self.tts.decode_to_mel_specs(outputs.new_ids[:, max(new_ids_len - 4, 0) :, :])
new_ids_len = outputs.new_ids.shape[1] # [1, seq_len, 4]
wav_np, sr = self.decode_mel_to_audio(mel_spec) # [1,100,50] -> [50*256]
if enable_regenerate:
if prev_wav is not None:
check_wav_np = wav_np[2048:].cpu().numpy() # 2*4*256(hop)
check_mel = mel_spec[0, :, 8:].cpu().numpy() # 2*4
else:
check_wav_np = wav_np.cpu().numpy()
check_mel = mel_spec[0].cpu().numpy()
if enable_regenerate and voice_checker.is_bad(check_wav_np, check_mel, chunk_size=2560):
voice_checker.reset()
# regenerate
N = output_chunk_size if prev_wav is None else output_chunk_size * 2
past_kv = []
for i in range(len(past_key_values)):
past_kv.append(
(
past_key_values[i][0][:, :, :-N, :], # .clone(),
past_key_values[i][1][:, :, :-N, :], # .clone(),
)
)
outputs = self.tts.generate(
input_ids=audio_input_ids[:, :-N, :],
past_key_values=past_kv,
streaming_tts_text_mask=streaming_tts_text_mask,
max_new_token=N,
force_no_stop=self.force_no_stop,
temperature=torch.tensor([0.1, 0.3, 0.1, 0.3], dtype=torch.float, device=self.tts.device),
eos_token=torch.tensor([625], dtype=torch.long, device=self.tts.device),
logits_warpers=logits_warpers,
logits_processors=logits_processors,
)
audio_input_ids = outputs.audio_input_ids
past_key_values = outputs.past_key_values
new_ids_len -= N
mel_spec = self.tts.decode_to_mel_specs(outputs.new_ids[:, new_ids_len:, :])
new_ids_len = outputs.new_ids.shape[1] # [1, seq_len, 4]
wav_np, sr = self.decode_mel_to_audio(mel_spec)
if prev_wav is not None:
wav_y = wav_np[: len(prev_wav)]
prev_wav = wav_np[len(prev_wav) :]
cur_text = gen_text_raw[prev_text_len:]
prev_text_len = len(gen_text_raw)
yield OmniOutput(text=cur_text, audio_wav=wav_y, sampling_rate=sr)
else:
prev_wav = wav_np
else:
# smooth wav
if prev_wav is not None:
wav_np, prev_wav = self._linear_overlap_add2_wav(
[prev_wav, wav_np], overlap=512 * 4
) # tts_hop256*2
cur_text = gen_text_raw[prev_text_len:]
prev_text_len = len(gen_text_raw)
yield OmniOutput(text=cur_text, audio_wav=wav_np, sampling_rate=sr)
else:
prev_wav = wav_np
if outputs.finished:
logger.debug("Generation finished.")
eos_lab = True
break
if not eos_lab and tts_text:
logger.debug("eos_lab False, Generation continue.")
if chunk_idx == 0:
begin = 0
else:
begin = chunk_idx * self.tts.streaming_text_chunk_size + tts_start_token_len
end = tts_token_lens + tts_start_token_len + 1 # 1 for [Etts]
if end > begin:
tts_input_ids = self.tts_processor.text_tokenizer(
tts_text, return_tensors="pt", add_special_tokens=False
)["input_ids"].cuda()
text_input_ids = tts_input_ids[:, begin:end]
streaming_tts_text_mask = self._build_streaming_mask(tts_token_lens).to(device=self.tts.device)
position_ids = torch.arange(begin, end, dtype=torch.long, device=self.tts.device).unsqueeze(0)
past_key_values = self.tts.prefill_text(
input_ids=text_input_ids,
position_ids=position_ids,
past_key_values=past_key_values,
lm_spk_emb_last_hidden_states=spk_embeds if chunk_idx == 0 else None,
)
while True:
# temp = [0.1, 0.3, 0.1, 0.3] if chunk_idx < 21 else [0.1] * self.tts.num_vq
outputs = self.tts.generate(
input_ids=audio_input_ids,
past_key_values=past_key_values,
streaming_tts_text_mask=streaming_tts_text_mask,
max_new_token=output_chunk_size,
force_no_stop=self.force_no_stop,
# temperature=torch.tensor([0.1] * self.tts.num_vq, dtype=torch.float, device=self.tts.device),
temperature=torch.tensor([0.1, 0.3, 0.1, 0.3], dtype=torch.float, device=self.tts.device),
eos_token=torch.tensor([625], dtype=torch.long, device=self.tts.device),
logits_warpers=logits_warpers,
logits_processors=logits_processors,
)
audio_input_ids = outputs.audio_input_ids
past_key_values = outputs.past_key_values
chunk_idx += 1
mel_spec = self.tts.decode_to_mel_specs(outputs.new_ids[:, max(new_ids_len - 4, 0) :, :])
new_ids_len = outputs.new_ids.shape[1] # [1, seq_len, 4]
wav_np, sr = self.decode_mel_to_audio(mel_spec)
if enable_regenerate:
if prev_wav is not None:
check_wav_np = wav_np[2048:].cpu().numpy() # 2*4*256(hop)
check_mel = mel_spec[0, :, 8:].cpu().numpy() # 2*4
else:
check_wav_np = wav_np.cpu().numpy()
check_mel = mel_spec[0].cpu().numpy()
if enable_regenerate and voice_checker.is_bad(check_wav_np, check_mel, chunk_size=2560):
voice_checker.reset()
# regenerate
N = output_chunk_size if prev_wav is None else output_chunk_size * 2
past_kv = []
for i in range(len(past_key_values)):
past_kv.append(
(
past_key_values[i][0][:, :, :-N, :], # .clone(),
past_key_values[i][1][:, :, :-N, :], # .clone(),
)
)
outputs = self.tts.generate(
input_ids=audio_input_ids[:, :-N, :],
past_key_values=past_kv,
streaming_tts_text_mask=streaming_tts_text_mask,
max_new_token=N,
force_no_stop=self.force_no_stop,
temperature=torch.tensor([0.1, 0.3, 0.1, 0.3], dtype=torch.float, device=self.tts.device),
eos_token=torch.tensor([625], dtype=torch.long, device=self.tts.device),
logits_warpers=logits_warpers,
logits_processors=logits_processors,
)
audio_input_ids = outputs.audio_input_ids
past_key_values = outputs.past_key_values
new_ids_len -= N
mel_spec = self.tts.decode_to_mel_specs(outputs.new_ids[:, new_ids_len:, :])
new_ids_len = outputs.new_ids.shape[1] # [1, seq_len, 4]
wav_np, sr = self.decode_mel_to_audio(mel_spec)
if prev_wav is not None:
wav_y = wav_np[: len(prev_wav)]
prev_wav = wav_np[len(prev_wav) :]
cur_text = gen_text_raw[prev_text_len:]
prev_text_len = len(gen_text_raw)
yield OmniOutput(text=cur_text, audio_wav=wav_y, sampling_rate=sr)
else:
prev_wav = wav_np
else:
# smooth wav
if prev_wav is not None:
wav_np, prev_wav = self._linear_overlap_add2_wav(
[prev_wav, wav_np], overlap=512 * 4
) # tts_hop256*2
cur_text = gen_text_raw[prev_text_len:]
prev_text_len = len(gen_text_raw)
yield OmniOutput(text=cur_text, audio_wav=wav_np, sampling_rate=sr)
else:
prev_wav = wav_np
if outputs.finished:
logger.debug("Generation finished.")
break
if outputs.new_ids.shape[1] > 2048:
stop = True
logger.debug("Generation length > 2048, stopped.")
break
if prev_wav is not None:
cur_text = gen_text_raw[prev_text_len:]
yield OmniOutput(text=cur_text, audio_wav=prev_wav, sampling_rate=sr) # yield last chunk wav without smooth
if new_segment_gen and not stop:
logger.debug(
f"tts_text tokens {tts_token_lens} exceed {self.tts.streaming_text_reserved_len - shift_len}, start a new segment generation"
)
tid_len = 5 # self.tts.streaming_text_chunk_size
prev_seg_text_ids = tts_input_ids[:, end - 1 - tid_len : end - 1] # exclude last Etts
aid_len = 50 # int(tid_len * new_ids_len / tts_token_lens)
prev_seg_audio_ids = outputs.new_ids[:, -aid_len:, :]
result = self._generate_mel_spec_audio_streaming(
spk_bounds,
streamer,
output_chunk_size,
spk_embeds,
prev_seg_text_ids,
text_left,
prev_seg_audio_ids,
enable_regenerate=enable_regenerate,
)
for res in result:
yield res
def decode_mel_to_audio(self, mel_spec, output_path=""):
with torch.inference_mode():
wav_numpy = self.vocos.decode(mel_spec.float()).cpu().squeeze()
sr = 24000
if output_path:
sf.write(output_path, wav_numpy.numpy(), samplerate=sr)
logger.info(f"Audio saved to {output_path}")
return wav_numpy, sr
# Copied from transformers.models.whisper.modeling_whisper.WhisperEncoderLayer and add use_cache for streaming inference
class MiniCPMWhisperEncoderLayer(nn.Module):
def __init__(self, config: WhisperConfig, layer_idx: int = None):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = WHISPER_ATTENTION_CLASSES[config._attn_implementation](
embed_dim=self.embed_dim,
num_heads=config.encoder_attention_heads,
dropout=config.attention_dropout,
config=config,
layer_idx=layer_idx,
)
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
layer_head_mask: torch.Tensor,
output_attentions: bool = False,
past_key_values: Optional[EncoderDecoderCache] = None,
use_cache: Optional[bool] = False,
) -> torch.Tensor:
r"""
Args:
hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, embed_dim)`):
Hidden states to be fed into the encoder layer.
attention_mask (`torch.FloatTensor` of shape `(batch_size, 1, tgt_len, src_len)`):
Attention mask where padding elements are indicated by large negative values.
layer_head_mask (`torch.FloatTensor` of shape `(encoder_attention_heads,)`):
Mask to nullify selected heads of the attention modules.
output_attentions (`bool`, *optional*):
Whether or not to return the attention weights.
past_key_values (`EncoderDecoderCache`, *optional*):
Past key-value pairs used for incremental decoding.
use_cache (`bool`, *optional*):
Whether or not to return updated `past_key_values` for caching.
Returns:
A tuple of shape `(hidden_states, optional(attn_weights), optional(past_key_values))`.
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
hidden_states, attn_weights, past_key_values = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
past_key_value=past_key_values,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
if hidden_states.dtype == torch.float16 and (
torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
):
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
if use_cache:
outputs += (past_key_values,)
return outputs
# Copied from from transformers.models.whisper.modeling_whisper.WhisperEncoder and add use_cache for streaming inference
class MiniCPMWhisperEncoder(WhisperEncoder):
def __init__(self, config: WhisperConfig):
super().__init__(config)
self.layers = nn.ModuleList(
[MiniCPMWhisperEncoderLayer(config, layer_idx=i) for i in range(config.encoder_layers)]
)
def forward(
self,
input_features,
attention_mask=None,
head_mask=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
past_key_values: Optional[EncoderDecoderCache] = None,
use_cache: Optional[bool] = None,
):
r"""
Forward pass of the Whisper encoder.
Args:
input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, sequence_length)`):
Float values of log-mel features extracted from the raw audio waveform. Typically generated
by a feature extractor (e.g., `WhisperFeatureExtractor`) that processes `.flac` or `.wav`
files into padded 2D mel spectrogram frames. These features are projected via convolution layers
(`conv1` and `conv2`) and then transformed into embeddings for the encoder.
attention_mask (`torch.Tensor`, *optional*):
Not used by Whisper for masking `input_features`, but included for API compatibility with
other models. If provided, it is simply ignored within the model. By default, Whisper
effectively ignores silence in the input log-mel spectrogram.
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected attention heads. The elements should be either 1 or 0, where:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked** (i.e., the attention head is dropped).
output_attentions (`bool`, *optional*):
Whether or not to return the attention tensors of all encoder layers. If set to `True`, the
returned tuple (or `BaseModelOutputWithPast`) will contain an additional element with
attention weights for each encoder layer.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. If set to `True`, the returned
tuple (or `BaseModelOutputWithPast`) will contain a tuple of hidden states, including the
initial embedding output as well as the outputs of each layer.
return_dict (`bool`, *optional*):
Whether or not to return a `BaseModelOutputWithPast` (a subclass of `ModelOutput`) instead
of a plain tuple. If set to `True`, the output will be a `BaseModelOutputWithPast` object,
otherwise it will be a tuple.
past_key_values (`EncoderDecoderCache`, *optional*):
When using caching for faster inference, this is an object that stores the key-value pairs
for attention states. If provided, the model will append new states to the existing cache
and return the updated cache. This speeds up sequential decoding or chunked inference.
- If `past_key_values` is `None`, no past states are used or returned.
- If `past_key_values` is not `None` and `use_cache=True`, the model will use the provided
cache and return the updated cache (as `next_encoder_cache`).
use_cache (`bool`, *optional*):
Whether or not the model should use caching (`past_key_values`) to speed up processing
during inference. When set to `True`, the model will:
- Inspect and use `past_key_values` if provided.
- Return updated `past_key_values` (under the name `next_encoder_cache` in
`BaseModelOutputWithPast`).
Returns:
`BaseModelOutputWithPast` or `tuple` (depending on `return_dict`):
If `return_dict=True`, a `BaseModelOutputWithPast` is returned, which contains:
- **last_hidden_state** (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
The output of the final encoder layer.
- **hidden_states** (`tuple(torch.FloatTensor)`, *optional*, returned if `output_hidden_states=True`):
Hidden states of the model at each layer (including the initial projection).
- **attentions** (`tuple(torch.FloatTensor)`, *optional*, returned if `output_attentions=True`):
Attention weights from each encoder layer.
- **past_key_values** (an object of type `EncoderDecoderCache` or `None`, *optional*):
Updated cache of key-value pairs if `use_cache=True`.
If `return_dict=False`, a tuple is returned, where the format is:
`(last_hidden_state, hidden_states, attentions)`, with `hidden_states` and `attentions`
only present if their respective `output_*` arguments are set to `True`.
Example:
>>> from transformers import AutoFeatureExtractor, WhisperConfig, WhisperForConditionalGeneration
>>> import torch
>>> # Load a feature extractor and a Whisper model
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("openai/whisper-tiny.en")
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")
>>> # Assume you have audio (list of floats or numpy array) loaded from a file
>>> # Then extract the mel features:
>>> input_features = feature_extractor(audio, sampling_rate=16000, return_tensors="pt").input_features
>>> # Forward pass
>>> outputs = model.encoder(
... input_features=input_features,
... output_hidden_states=True,
... output_attentions=True,
... use_cache=True
... )
>>> # Retrieve the last hidden state
>>> last_hidden_state = outputs.last_hidden_state
>>> print(last_hidden_state.shape)
torch.Size([batch_size, seq_length, hidden_size])
>>> # Retrieve the intermediate hidden states if output_hidden_states=True
>>> all_encoder_hidden_states = outputs.hidden_states
>>> # Retrieve attention weights if output_attentions=True
>>> all_encoder_attentions = outputs.attentions
>>> # Retrieve updated past key values if use_cache=True
>>> encoder_cache = outputs.past_key_values
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Ignore copy
input_features = input_features.to(dtype=self.conv1.weight.dtype, device=self.conv1.weight.device)
inputs_embeds = nn.functional.gelu(self.conv1(input_features))
inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds))
inputs_embeds = inputs_embeds.permute(0, 2, 1)
embed_pos = self.embed_positions.weight
past_key_values_length = 0
if use_cache:
if past_key_values is None:
past_key_values = EncoderDecoderCache(DynamicCache(), DynamicCache())
elif isinstance(past_key_values, list):
past_key_values = EncoderDecoderCache(DynamicCache.from_legacy_cache(past_key_values), DynamicCache())
elif isinstance(past_key_values, DynamicCache):
past_key_values = EncoderDecoderCache(past_key_values, DynamicCache())
else:
pass
past_key_values_length = past_key_values.self_attention_cache.get_usable_length(inputs_embeds.shape[1])
if inputs_embeds.shape[1] + past_key_values_length > embed_pos.shape[0]:
logger.warning("seems the audio is longer than 30s. repeating the last part of the audio")
embed_pos_front = embed_pos[past_key_values_length:, :]
embed_pos = torch.cat(
(
embed_pos_front,
torch.repeat_interleave(
embed_pos[-1, :].unsqueeze(0),
inputs_embeds.shape[1] - embed_pos.shape[0] + past_key_values_length,
dim=0,
),
)
)
else:
embed_pos = embed_pos[past_key_values_length : inputs_embeds.shape[1] + past_key_values_length, :]
else:
embed_pos = embed_pos[: inputs_embeds.shape[1], :]
hidden_states = inputs_embeds + embed_pos
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
assert head_mask.size()[0] == (
len(self.layers)
), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
to_drop = False
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop: # skip the layer
to_drop = True
# Ignore copy
if to_drop:
layer_outputs = (None, None)
else:
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
(head_mask[idx] if head_mask is not None else None),
output_attentions,
past_key_values,
use_cache,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
output_attentions=output_attentions,
past_key_values=past_key_values,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_encoder_cache = layer_outputs[2 if output_attentions else 1]
else:
next_encoder_cache = None
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
hidden_states = self.layer_norm(hidden_states)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
hidden_states=encoder_states,
attentions=all_attentions,
past_key_values=next_encoder_cache,
)
# Borrowed from `https://github.com/2noise/ChatTTS/blob/main/ChatTTS/model/dvae.py`
class ConvNeXtBlock(nn.Module):
def __init__(
self,
dim: int,
intermediate_dim: int,
kernel: int,
dilation: int,
layer_scale_init_value: float = 1e-6,
):
# ConvNeXt Block copied from Vocos.
super().__init__()
self.dwconv = nn.Conv1d(
dim,
dim,
kernel_size=kernel,
padding=dilation * (kernel // 2),
dilation=dilation,
groups=dim,
)
self.norm = nn.LayerNorm(dim, eps=1e-6)
self.pwconv1 = nn.Linear(dim, intermediate_dim)
self.act = nn.GELU()
self.pwconv2 = nn.Linear(intermediate_dim, dim)
self.coef = (
nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True)
if layer_scale_init_value > 0
else None
)
def forward(self, x: torch.Tensor, cond=None) -> torch.Tensor:
residual = x
y = self.dwconv(x)
y.transpose_(1, 2) # (B, C, T) -> (B, T, C)
x = self.norm(y)
del y
y = self.pwconv1(x)
del x
x = self.act(y)
del y
y = self.pwconv2(x)
del x
if self.coef is not None:
y *= self.coef
y.transpose_(1, 2) # (B, T, C) -> (B, C, T)
x = y + residual
del y
return x
# Borrowed from `https://github.com/2noise/ChatTTS/blob/main/ChatTTS/model/dvae.py`
class GFSQ(nn.Module):
def __init__(
self,
dim: int,
levels: List[int],
G: int,
R: int,
eps=1e-5,
transpose=True,
):
super(GFSQ, self).__init__()
self.quantizer = GroupedResidualFSQ(
dim=dim,
levels=list(levels),
num_quantizers=R,
groups=G,
)
self.n_ind = math.prod(levels)
self.eps = eps
self.transpose = transpose
self.G = G
self.R = R
def _embed(self, x: torch.Tensor):
if self.transpose:
x = x.transpose(1, 2)
x = x.view(x.size(0), x.size(1), self.G, self.R).permute(2, 0, 1, 3)
feat = self.quantizer.get_output_from_indices(x)
return feat.transpose_(1, 2) if self.transpose else feat
def __call__(self, x: torch.Tensor) -> torch.Tensor:
return super().__call__(x)
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.transpose:
x.transpose_(1, 2)
_, ind = self.quantizer(x)
ind = ind.permute(1, 2, 0, 3).contiguous()
ind = ind.view(ind.size(0), ind.size(1), -1)
return ind.transpose_(1, 2) if self.transpose else ind
# Borrowed from `https://github.com/2noise/ChatTTS/blob/main/ChatTTS/model/dvae.py`
class DVAEDecoder(nn.Module):
def __init__(
self,
idim: int,
odim: int,
n_layer=12,
bn_dim=64,
hidden=256,
kernel=7,
dilation=2,
up=False,
):
super().__init__()
self.up = up
self.conv_in = nn.Sequential(
nn.Conv1d(idim, bn_dim, 3, 1, 1),
nn.GELU(),
nn.Conv1d(bn_dim, hidden, 3, 1, 1),
)
self.decoder_block = nn.ModuleList(
[
ConvNeXtBlock(
hidden,
hidden * 4,
kernel,
dilation,
)
for _ in range(n_layer)
]
)
self.conv_out = nn.Conv1d(hidden, odim, kernel_size=1, bias=False)
def forward(self, x: torch.Tensor, conditioning=None) -> torch.Tensor:
# B, C, T
y = self.conv_in(x)
del x
for f in self.decoder_block:
y = f(y, conditioning)
x = self.conv_out(y)
del y
return x
# Borrowed from `https://github.com/2noise/ChatTTS/blob/main/ChatTTS/model/dvae.py`
class DVAE(nn.Module):
def __init__(
self,
):
super().__init__()
coef = torch.rand(100)
self.coef = nn.Parameter(coef.unsqueeze(0).unsqueeze_(2))
self.downsample_conv = nn.Sequential(
nn.Conv1d(100, 512, 3, 1, 1),
nn.GELU(),
nn.Conv1d(512, 512, 4, 2, 1),
nn.GELU(),
)
self.encoder = DVAEDecoder(
idim=512,
odim=1024,
hidden=256,
n_layer=12,
bn_dim=128,
)
self.decoder = DVAEDecoder(
idim=512,
odim=512,
hidden=256,
n_layer=12,
bn_dim=128,
)
self.out_conv = nn.Conv1d(512, 100, 3, 1, 1, bias=False)
self.vq_layer = GFSQ(
dim=1024,
levels=(5, 5, 5, 5),
G=2,
R=2,
)
@torch.inference_mode()
def forward(self, inp: torch.Tensor, mode: Literal["encode", "decode"] = "decode") -> torch.Tensor:
if mode == "encode" and hasattr(self, "encoder") and self.vq_layer is not None:
mel = inp.clone()
x: torch.Tensor = self.downsample_conv(
torch.div(mel, self.coef.view(100, 1).expand(mel.shape), out=mel),
).unsqueeze_(0)
del mel
x = self.encoder(x)
ind = self.vq_layer(x)
del x
return ind
if self.vq_layer is not None:
vq_feats = self.vq_layer._embed(inp)
else:
vq_feats = inp
vq_feats = (
vq_feats.view(
(vq_feats.size(0), 2, vq_feats.size(1) // 2, vq_feats.size(2)),
)
.permute(0, 2, 3, 1)
.flatten(2)
)
dec_out = self.out_conv(
self.decoder(
x=vq_feats,
),
)
del vq_feats
return torch.mul(dec_out, self.coef, out=dec_out)
def apply_spk_emb(
input_ids: torch.Tensor = None,
spk_emb: torch.Tensor = None,
input_embeds: torch.Tensor = None,
spk_emb_token_id: int = 0,
num_spk_embs: int = 1,
):
"""
Replace consecutive `num_spk_embs` speaker embedding placeholders in input_embeds with pre-prepared speaker embeddings. This is an in-place replacement, no new tensor is created, so no value is returned.
Args:
input_ids (torch.Tensor): Input ID tensor, shape [batch_size, seq_len_max]
spk_emb (torch.Tensor): Speaker embedding tensor, shape [batch_size, num_spk_emb, hidden_dim]
input_embeds (torch.Tensor): Input embedding tensor, shape [batch_size, seq_len_max, hidden_dim]
spk_emb_token_id (int): ID of the speaker embedding token
num_spk_embs (int): Number of speaker embeddings
Returns:
None
"""
batch_size = input_ids.shape[0]
for idx in range(batch_size):
input_ids_ = input_ids[idx] # [seq_len_max]
spk_emb_ = spk_emb[idx] # [num_spk_emb]
mask_ = input_ids_ == spk_emb_token_id # [batch_size, seq_len_max]
nonzero_position_idx = mask_.nonzero(as_tuple=False) # [num_spk_emb, 1]
assert nonzero_position_idx.shape[0] == num_spk_embs
begin_idx = nonzero_position_idx.min()
end_idx = nonzero_position_idx.max()
input_embeds[idx, begin_idx : end_idx + 1, :] = spk_emb_
return
def make_streaming_chunk_mask_generation(
inputs_embeds: torch.Tensor,
past_seen_tokens: int,
streaming_tts_text_mask: torch.Tensor,
streaming_reserved_length: int = 300,
streaming_audio_chunk_size: int = 50,
streaming_text_chunk_size: int = 10,
num_spk_emb: int = 1,
use_spk_emb: bool = True,
) -> torch.Tensor:
"""
In streaming audio generation, determine which `text` positions the TTS model can attend to when generating each chunk of `audio` tokens.
This function creates a mask that allows the model to attend to a specific chunk of text
tokens when generating each chunk of audio tokens, enabling streaming TTS generation.
Args:
inputs_embeds (torch.Tensor): Input embeddings tensor.
past_seen_tokens (int): Number of tokens already seen by the model.
streaming_tts_text_mask (torch.Tensor): Mask for the text tokens.
streaming_reserved_length (int, optional): Number of reserved tokens for streaming. Defaults to 300.
streaming_chunk_length (int, optional): Length of each streaming chunk. Defaults to 50.
streaming_text_chunk_size (int, optional): Size of each text chunk. Defaults to 7.
Returns:
torch.Tensor: Causal mask for streaming TTS generation, shape is [batch_size=1, 1, seq_len=1, past_seen_tokens+1]
Raises:
AssertionError: If the batch size is not 1 (only supports batch size of 1 for inference).
"""
assert inputs_embeds.shape[0] == 1
dtype = inputs_embeds.dtype
device = inputs_embeds.device
min_dtype = torch.finfo(dtype).min
# Add `1` to the past seen tokens to account for new `tokens` during `generate`
causal_mask = torch.full((1, past_seen_tokens + inputs_embeds.shape[1]), fill_value=0, dtype=dtype, device=device)
# Calculate the start of invisible text tokens
invisible_text_tokens_start = (
min(
math.ceil((past_seen_tokens - streaming_reserved_length) / streaming_audio_chunk_size)
* streaming_text_chunk_size,
streaming_reserved_length,
)
+ 1
+ num_spk_emb * use_spk_emb
) # Add 1 for [Stts] and N for [spk_emb] tokens if `use_spk_emb` is True
invisible_text_tokens_end = (
streaming_reserved_length + 1 + num_spk_emb * use_spk_emb + 1
) # Add 1 for [Ptts] (aka `audio_bos_token_id`)
# Set invisible text tokens to min_dtype (effectively -inf)
causal_mask[0, invisible_text_tokens_start:invisible_text_tokens_end] = min_dtype
# Mask padding positions in the text mask
causal_mask[0, 0 : 1 + num_spk_emb * use_spk_emb + streaming_reserved_length + 1].masked_fill_(
streaming_tts_text_mask == 0, min_dtype
)
# Add extra dimensions for batch and heads
causal_mask = causal_mask.unsqueeze(0).unsqueeze(0)
return causal_mask
# Borrowed from `https://github.com/2noise/ChatTTS/blob/main/ChatTTS/model/processors.py`
class CustomRepetitionPenaltyLogitsProcessorRepeat:
def __init__(self, penalty: float, max_input_ids: int, past_window: int):
if not isinstance(penalty, float) or not (penalty > 0):
raise ValueError(f"`penalty` has to be a strictly positive float, but is {penalty}")
self.penalty = penalty
self.max_input_ids = max_input_ids
self.past_window = past_window
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
if input_ids.size(1) > self.past_window:
input_ids = input_ids.narrow(1, -self.past_window, self.past_window)
freq = F.one_hot(input_ids, scores.size(1)).sum(1)
if freq.size(0) > self.max_input_ids:
freq.narrow(0, self.max_input_ids, freq.size(0) - self.max_input_ids).zero_()
alpha = torch.pow(self.penalty, freq)
scores = scores.contiguous()
inp = scores.multiply(alpha)
oth = scores.divide(alpha)
con = scores < 0
out = torch.where(con, inp, oth)
del inp, oth, scores, con, alpha
return out
@dataclass
class ConditionalChatTTSGenerationOutput(ModelOutput):
"""
Output class for ConditionalChatTTS generation.
Args:
new_ids (torch.LongTensor): Newly generated audio code sequence, shape (batch_size, sequence_length, num_vq).
audio_input_ids (torch.LongTensor): Updated input IDs including condition and generated audio codes, shape (batch_size, full_sequence_length, num_vq).
past_key_values (Tuple[Tuple[torch.FloatTensor]]): Tuple containing pre-computed keys and values used for attention mechanism. Each element has shape (batch_size, num_heads, sequence_length, embed_size_per_head).
finished (bool): Boolean indicating whether generation is complete.
"""
new_ids: torch.LongTensor = None
audio_input_ids: torch.LongTensor = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
finished: bool = None
class MultiModalProjector(nn.Module):
def __init__(self, in_dim, out_dim):
super().__init__()
self.linear1 = nn.Linear(in_features=in_dim, out_features=out_dim, bias=True)
self.relu = nn.ReLU()
self.linear2 = nn.Linear(in_features=out_dim, out_features=out_dim, bias=True)
def forward(self, audio_features):
hidden_states = self.relu(self.linear1(audio_features))
hidden_states = self.linear2(hidden_states)
return hidden_states
class ConditionalChatTTS(PreTrainedModel):
"""A conditional text-to-speech model that can generate speech from text with speaker conditioning.
This model extends PreTrainedModel to provide text-to-speech capabilities with:
- LLM hidden state conditioning
- Streaming generation
The model uses a transformer architecture with LLM hidden states and can operate in both
streaming and non-streaming modes for flexible deployment.
The model process sequence in the following format:
| text bos token | LLM embedding projected to tts embedding space | text tokens (fixed length, reserved for future tokens) | audio bos token | audio tokens (audio token length is not fixed)| audio eos token |
The format is designed to support LLM-conditioned streaming audio generation.
Usage:
To support streaming generation, two global variables should be maintained outside of the model.
1. `audio_input_ids`: stores *discrete* audio codes. It is a tensor with shape [1, sequence length+1, num_vq].
2. `past_key_values`: stores the KV cache for both text tokens and audio codes. It is a list of tuples, each tuple contains two tensors with shape [1, num_attention_heads, sequence length, hidden_size // num_attention_heads]
where `num_vq` is the number of audio codebooks, in default setting, it is `4`.
1. Create an empty `past_key_values` with
```python
initial_kv_cache_length = 1 + model.num_spk_embs + model.streaming_text_reserved_len # where `1` denotes the `bos` token
dtype = model.emb_text.weight.dtype
device = model.emb_text.weight.device
past_key_values = [
(
torch.zeros(1, model.config.num_attention_heads, initial_kv_cache_length, model.config.hidden_size // model.config.num_attention_heads, dtype=dtype, device=device),
torch.zeros(1, model.config.num_attention_heads, initial_kv_cache_length, model.config.hidden_size // model.config.num_attention_heads, dtype=dtype, device=device)
)
for _ in range(model.config.num_hidden_layers)
]
2. At the same time, create an empty `audio_input_ids` with shape [1, sequence length, num_vq], `num_vq` denotes multiple layer audio codebooks. But here we also include text tokens in the sequence, but they will be zeros, and will not be used, just a placeholder.
```python
initial_audio_input_ids_length = 1 + model.num_spk_embs + model.streaming_text_reserved_len + 1
# [bos token, speaker embeddings, text tokens, audio bos token]
audio_input_ids = torch.zeros(batch_size=1, initial_audio_input_ids_length, model.num_vq)
```
2. Prefill some text tokens to TTS model (for example, 10 tokens) using `prefill_text` method.
```python
outputs = llm.generate(**kwargs)
llm_tokens = some_function_to_extract_llm_tokens(outputs)
lm_spk_emb_last_hidden_states = some_function_to_extract_lm_spk_emb_last_hidden_states(outputs)
tts_text_input_ids = tts_tokenizer.encode(llm_tokenizer.decode(llm_tokens))
# here assume we are prefilling text token 0 to text token 9 (included), totally 10 tokens.
begin = 0
end = 9+1
position_ids = torch.arange(begin, end, dtype=torch.long, device=device)
past_key_values = model.prefill_text(
input_ids=tts_text_input_ids,
position_ids=position_ids,
past_key_values=past_key_values,
lm_spk_emb_last_hidden_states=lm_spk_emb_last_hidden_states,
)
```
3. Make a `streaming_tts_text_mask` to denote which position contains valid text tokens, similar to `attention_mask` in standard causal attention.
```python
streaming_tts_text_mask = torch.zeros(model.streaming_reserved_length)
streaming_tts_text_mask[0:end] = 1 # denotes these post
```
3. Generate audio codes using `generate` method.
```python
outputs = model.generate(
input_ids=audio_input_ids,
past_key_values=past_key_values,
streaming_tts_text_mask=streaming_tts_text_mask,
max_new_token=50,
)
# update past_key_values and input_ids
past_key_values = outputs.past_key_values
audio_input_ids = outputs.input_ids
```
The `past_key_values` is extended by `max_new_token=50`, and `audio_input_ids` is also extended by `max_new_token=50` after `generate` calling.
4. Notice that after prefilling `10` text tokens, the model can generate up to `50` audio tokens, if you want to generate more audio tokens, you need to prefill next `10` text tokens. And it is okay to only generate `25` audio tokens for faster initial response.
5. Repeat steps `2,3,4` as needed in your streaming audio generation cases, but ensure usage complies with the following guidelines discussed above.
"""
config_class = ConditionalChatTTSConfig
_no_split_modules = []
def __init__(self, config: ConditionalChatTTSConfig):
super().__init__(config)
self.use_speaker_embedding = config.use_speaker_embedding
self.use_llm_hidden_state = config.use_llm_hidden_state
self.num_spk_embs = config.num_spk_embs
self.spk_emb_token_id = config.spk_emb_token_id
self.use_text = config.use_text
self.streaming = config.streaming
self.streaming_text_chunk_size = config.streaming_text_chunk_size
self.streaming_audio_chunk_size = config.streaming_audio_chunk_size
self.streaming_text_reserved_len = config.streaming_text_reserved_len
self.audio_bos_token_id = config.audio_bos_token_id
self.num_mel_bins = config.num_mel_bins
self.num_vq = config.num_vq
self.num_audio_tokens = config.num_audio_tokens
self.top_p = config.top_p
self.top_k = config.top_k
self.repetition_penalty = config.repetition_penalty
if self.config.use_mlp:
self.projector = MultiModalProjector(config.llm_dim, config.hidden_size)
else:
self.projector = nn.Linear(config.llm_dim, config.hidden_size, bias=False)
self.emb_code = nn.ModuleList(
[nn.Embedding(config.num_audio_tokens, config.hidden_size) for _ in range(config.num_vq)]
)
self.emb_text = nn.Embedding(config.num_text_tokens, config.hidden_size)
self.head_code = nn.ModuleList(
[
weight_norm(
nn.Linear(config.hidden_size, config.num_audio_tokens, bias=False),
name="weight",
)
for _ in range(config.num_vq)
]
)
dvae = DVAE()
self.dvae = dvae
model_config = LlamaConfig(
hidden_size=config.hidden_size,
intermediate_size=config.intermediate_size,
num_attention_heads=config.num_attention_heads,
num_hidden_layers=config.num_hidden_layers,
max_position_embeddings=config.max_position_embeddings,
attn_implementation=config.attn_implementation,
)
model = LlamaModel(model_config)
self.model = model
@torch.inference_mode()
def merge_inputs_embeds(
self,
input_ids: torch.Tensor,
lm_spk_emb_last_hidden_states: Optional[torch.Tensor] = None,
):
"""Merge `input_ids` and `lm_spk_emb_last_hidden_states` to `inputs_embeds`.
Args:
input_ids (torch.Tensor): Input token IDs.
lm_spk_emb_last_hidden_states (Optional[torch.Tensor], optional): Last hidden states of speaker embeddings from the language model. Defaults to None.
Raises:
NotImplementedError: If speaker embedding is not used and language model hidden states are not implemented.
Returns:
torch.Tensor: Prepared input embeddings for the model.
"""
assert input_ids.shape[0] == 1
# Embed input_ids to input_embeds
inputs_embeds = self.emb_text(input_ids)
# Inject speaker embedding to input_embeds if it exists
if self.use_speaker_embedding:
spk_emb_mask = input_ids == self.spk_emb_token_id
if spk_emb_mask.any():
assert lm_spk_emb_last_hidden_states is not None
# Project spk emb to tts hidden size first, [batch_size, num_spk_emb, llm_dim] -> [batch_size, num_spk_emb, self.hidden_size]
lm_spk_emb_last_hidden_states = lm_spk_emb_last_hidden_states.to(self.projector.linear1.weight.dtype)
projected_spk_emb = self.projector(lm_spk_emb_last_hidden_states)
projected_spk_emb = F.normalize(projected_spk_emb, p=2, dim=-1)
apply_spk_emb(
input_ids=input_ids,
spk_emb=projected_spk_emb,
input_embeds=inputs_embeds,
spk_emb_token_id=self.spk_emb_token_id,
num_spk_embs=self.num_spk_embs,
)
else:
raise NotImplementedError
return inputs_embeds
@torch.inference_mode()
def prefill_text(
self,
input_ids: torch.Tensor,
position_ids: torch.LongTensor,
past_key_values: List[Tuple[torch.Tensor, torch.Tensor]],
lm_spk_emb_last_hidden_states: Optional[torch.Tensor] = None,
):
"""Prefill a chunk of new text tokens in streaming setting.
Specifically speaking, update `past_key_values` using new text tokens, then the model will read the new text tokens.
Args:
input_ids (Tensor): Tensor of shape [batch_size, seq_len]
position_ids (LongTensor): Tensor of shape [batch_size, seq_len]
past_key_values (List[Tuple[Tensor]]): KV Cache of all layers, each layer is a tuple (Tensor, Tensor) denoting keys and values. Each tensor is of seq_len = `self.streaming_text_reserved_len`. `past_key_values` will be updated.
lm_spk_emb_last_hidden_states (Tensor, optional): Tensor of shape [batch_size, num_spk_emb, llm_dim]. Defaults to None.
lm_last_hidden_states (Tensor, optional): _description_. Defaults to None.
Note that all `batch_size` should be `1`.
"""
assert input_ids.shape[0] == 1
assert past_key_values is not None
# Merge text and LLM embeddings
inputs_embeds = self.merge_inputs_embeds(
input_ids=input_ids,
lm_spk_emb_last_hidden_states=lm_spk_emb_last_hidden_states,
)
# Clone KV Cache
past_key_values_for_prefill = []
for i in range(len(past_key_values)):
past_key_values_for_prefill.append(
(
past_key_values[i][0][:, :, : position_ids[:, 0], :].clone(),
past_key_values[i][1][:, :, : position_ids[:, 0], :].clone(),
)
)
# Model forward
outputs_prefill: BaseModelOutputWithPast = self.model(
attention_mask=None, # because for text, it is standard causal attention mask, do nothing
position_ids=position_ids, # position_ids denotes the position of new text tokens in the sequence
past_key_values=past_key_values_for_prefill, # `past_key_values` will be updated by the model
inputs_embeds=inputs_embeds, # contains text and language model embedding
use_cache=True,
output_attentions=False,
cache_position=position_ids, # which new positions will use this cache, basically the same as position_ids
)
# Get model updated KV Cache
past_key_values_for_prefill_updated = outputs_prefill.past_key_values
# Update generated KV Cache to input `past_key_values`
for layer_idx in range(len(past_key_values)):
# Update keys
past_key_values[layer_idx][0][:, :, position_ids[:, 0] : position_ids[:, -1] + 1, :] = (
past_key_values_for_prefill_updated[layer_idx][0][
:, :, position_ids[:, 0] : position_ids[:, -1] + 1
].clone()
)
# Update values
past_key_values[layer_idx][1][:, :, position_ids[:, 0] : position_ids[:, -1] + 1, :] = (
past_key_values_for_prefill_updated[layer_idx][1][
:, :, position_ids[:, 0] : position_ids[:, -1] + 1
].clone()
)
# TODO: del past_key_values_for_prefill_updated recursively
# TODO: del outputs_prefill recursively
return past_key_values
@torch.inference_mode()
def prefill_audio_ids(
self,
input_ids: torch.Tensor,
past_key_values: List[Tuple[torch.Tensor, torch.Tensor]],
streaming_tts_text_mask=None,
add_audio_bos: bool = True,
):
"""Prefill a chunk of audio ids to the model. Used in sliding-window long audio generation.
Specifically, prefill many audio ids (typically from last window) to the model in the new window.
Args:
input_ids (torch.Tensor): (1, seq_len, num_vq) Audio input token ids.
past_key_values (List[Tuple[torch.Tensor, torch.Tensor]]): Past key values for attention mechanism.
"""
assert input_ids.shape[0] == 1
assert past_key_values is not None
code_emb = [self.emb_code[i](input_ids[:, :, i]) for i in range(self.num_vq)]
inputs_embeds = torch.stack(code_emb, 3).sum(3) # [1,seq_len,768]
input_len = input_ids.shape[1]
if add_audio_bos:
narrowed_input_ids = torch.tensor([[self.audio_bos_token_id]], dtype=torch.long, device=self.device)
bos_inputs_embeds = self.emb_text(narrowed_input_ids)
inputs_embeds = torch.cat([bos_inputs_embeds, inputs_embeds], dim=1)
input_len += 1
past_key_values_length = past_key_values[0][0].shape[2]
position_ids = torch.arange(
past_key_values_length, past_key_values_length + input_len, dtype=torch.long, device=self.device
).unsqueeze(0)
cache_position = position_ids.clone()
causal_mask = make_streaming_chunk_mask_generation(
inputs_embeds=inputs_embeds,
past_seen_tokens=past_key_values[0][0].shape[2],
streaming_tts_text_mask=streaming_tts_text_mask,
streaming_reserved_length=self.streaming_text_reserved_len,
streaming_text_chunk_size=self.streaming_text_chunk_size,
) # [1, 1, 1, past_key_values_length + input_len]
# Model forward
outputs: BaseModelOutputWithPast = self.model(
attention_mask=causal_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=True,
output_attentions=False,
cache_position=cache_position,
)
past_key_values = outputs.past_key_values
return past_key_values
@torch.inference_mode()
def generate(
self,
input_ids: torch.Tensor,
past_key_values: List[Tuple[torch.Tensor, torch.Tensor]],
temperature: torch.Tensor,
eos_token: Union[int, torch.Tensor],
streaming_tts_text_mask=None,
force_no_stop=False,
min_new_token=10,
max_new_token=50,
logits_warpers: List[LogitsWarper] = [],
logits_processors: List[CustomRepetitionPenaltyLogitsProcessorRepeat] = [],
show_tqdm=False,
):
"""Generate audio codes in streaming setting or non-streaming setting.
Specifically speaking, generate audio codes when not all text tokens are prefilled.
Always pass a valid `past_key_values` to the method. The method does not do `prefill` by itself. It relies on `prefill_text` method to provide valid `past_key_values`. Please refer to docstring of this class for more details.
In this method, we borrowed a lot of codes from `https://github.com/2noise/ChatTTS/blob/main/ChatTTS/model/gpt.py`.
Args:
input_ids (torch.Tensor): Input token ids.
past_key_values (List[Tuple[torch.Tensor, torch.Tensor]]): Past key values for attention mechanism.
temperature (torch.Tensor): Temperature for sampling.
eos_token (Union[int, torch.Tensor]): End of sequence token.
streaming_tts_text_mask (Optional[torch.Tensor], optional): Mask for streaming TTS text. Defaults to None.
max_new_token (int, optional): Maximum number of new tokens to generate. Defaults to 50.
logits_warpers (List[LogitsWarper], optional): List of logits warpers. Defaults to [].
logits_processors (List[CustomRepetitionPenaltyLogitsProcessorRepeat], optional): List of logits processors. Defaults to [].
show_tqdm (bool, optional): Whether to show progress bar. Defaults to True.
Returns:
GenerationOutputs: Generation outputs.
"""
# We only support batch size `1` for now
assert input_ids.shape[0] == 1
assert past_key_values is not None
# fix: this should not be `input_ids.shape[1]`
# start_idx = input_ids.shape[1]
start_idx = 1 + self.num_spk_embs * self.use_speaker_embedding + self.streaming_text_reserved_len + 1
finish = torch.zeros(input_ids.shape[0], device=input_ids.device).bool()
temperature = temperature.unsqueeze(0).expand(input_ids.shape[0], -1).contiguous().view(-1, 1)
progress = input_ids.shape[1]
# Pre-allocate input_ids, shape is [batch_size=1, max_possible_seq_len, self.num_vqs]
input_ids_buf = torch.zeros(
input_ids.shape[0], # batch_size
progress + max_new_token, # max_possible_seq_len = input_ids.shape[1] + max_new_token
input_ids.shape[2], # self.num_vqs
dtype=input_ids.dtype,
device=input_ids.device,
)
# Copy existing `input_ids` to `input_ids_buf`
input_ids_buf.narrow(1, 0, progress).copy_(input_ids)
del input_ids
input_ids = input_ids_buf.narrow(1, 0, progress)
pbar: Optional[tqdm] = None
if show_tqdm:
pbar = tqdm(
total=max_new_token,
desc="code",
bar_format="{l_bar}{bar}| {n_fmt}/{total_fmt}(max) [{elapsed}, {rate_fmt}{postfix}]",
)
condition_length = 1 + self.num_spk_embs * self.use_speaker_embedding + self.streaming_text_reserved_len + 1
for i in range(max_new_token):
# Prepare generation inputs
audio_bos = False
# If this is the first audio token, the case is SPECIAL
if progress == condition_length:
audio_bos = True
assert progress == (
past_key_values[0][0].shape[2] + 1
) # If you are using according to the guidelines, this should be passed.
if audio_bos:
# Generate the first token, activate the model with `self.audio_bos_token_id`, the model will predict a new audio token. This is a special case because without the `audio bos token`, it is impossible to generate the first audio token in our streaming setting.
narrowed_input_ids = torch.tensor([[self.audio_bos_token_id]], dtype=torch.long, device=self.device)
inputs_embeds = self.emb_text(narrowed_input_ids)
del narrowed_input_ids
else:
# Generate the following audio tokens, it is applicable to all other cases, including second and the following calling of `generate`.
narrowed_input_ids = input_ids.narrow(dim=1, start=input_ids.shape[1] - 1, length=1)
code_emb = [self.emb_code[i](narrowed_input_ids[:, :, i]) for i in range(self.num_vq)]
inputs_embeds = torch.stack(code_emb, 3).sum(3)
position_ids = torch.tensor(
[past_key_values[0][0].shape[2]], dtype=torch.long, device=self.device
).unsqueeze(0)
cache_position = position_ids.clone()
# Make causal mask
causal_mask = make_streaming_chunk_mask_generation(
inputs_embeds=inputs_embeds,
past_seen_tokens=past_key_values[0][0].shape[2],
streaming_tts_text_mask=streaming_tts_text_mask,
streaming_reserved_length=self.streaming_text_reserved_len,
streaming_text_chunk_size=self.streaming_text_chunk_size,
)
# Model forward
outputs: BaseModelOutputWithPast = self.model(
attention_mask=causal_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=True,
output_attentions=False,
cache_position=cache_position,
)
del position_ids
del inputs_embeds
del cache_position
del causal_mask
hidden_states = outputs.last_hidden_state
past_key_values = outputs.past_key_values
with P.cached():
logits = torch.empty(
hidden_states.size(0),
hidden_states.size(1),
self.num_audio_tokens,
self.num_vq,
dtype=torch.float,
device=self.device,
)
for num_vq_iter in range(self.num_vq):
x: torch.Tensor = self.head_code[num_vq_iter](hidden_states)
logits[..., num_vq_iter] = x
del x
del hidden_states
# logits = logits[:, -1].float()
logits = logits.narrow(1, -1, 1).squeeze_(1).float()
# logits = rearrange(logits, "b c n -> (b n) c")
logits = logits.permute(0, 2, 1)
logits = logits.reshape(-1, logits.size(2))
# logits_token = rearrange(input_ids[:, start_idx:], "b c n -> (b n) c")
input_ids_sliced = input_ids.narrow(
1,
start_idx,
input_ids.size(1) - start_idx,
).permute(0, 2, 1)
logits_token = input_ids_sliced.reshape(
input_ids_sliced.size(0) * input_ids_sliced.size(1),
-1,
).to(self.device)
del input_ids_sliced
logits /= temperature
if not audio_bos:
for logitsProcessors in logits_processors:
logits = logitsProcessors(logits_token, logits)
if not audio_bos:
for logitsWarpers in logits_warpers:
logits = logitsWarpers(logits_token, logits)
del logits_token
if i < min_new_token:
logits[:, eos_token] = -torch.inf
if force_no_stop:
logits[:, eos_token] = -torch.inf
scores = F.softmax(logits, dim=-1)
del logits
idx_next = torch.multinomial(scores, num_samples=1) # .to(finish.device)
del scores
# idx_next = rearrange(idx_next, "(b n) 1 -> b n", n=self.num_vq)
idx_next = idx_next.view(-1, self.num_vq)
finish_or = idx_next.eq(eos_token).any(1)
finish.logical_or_(finish_or)
del finish_or
# Store new `token` into `input_ids_buf`
input_ids_buf.narrow(1, progress, 1).copy_(idx_next.unsqueeze_(1))
if i == 0 and finish.any():
# raise Exception
break
del idx_next
progress += 1
input_ids = input_ids_buf.narrow(1, 0, progress)
if finish.all():
break
if pbar is not None:
pbar.update(1)
if pbar is not None:
pbar.close()
if not finish.all():
if show_tqdm:
logger.info(f"incomplete result. hit max_new_token: {max_new_token}")
del input_ids_buf
if finish.all():
# the last may contains eos token
genrated_input_ids = input_ids[:, condition_length:-1, :]
else:
# there is no eos token
genrated_input_ids = input_ids[:, condition_length:, :]
return ConditionalChatTTSGenerationOutput(
new_ids=genrated_input_ids,
audio_input_ids=input_ids, # for update purpose
past_key_values=past_key_values, # for update purpose
finished=finish.all(),
)
@torch.inference_mode()
def decode_to_mel_specs(
self,
result_list: List[torch.Tensor],
):
"""Decode discrete audio codes to mel spectrograms.
Borrowed from `https://github.com/2noise/ChatTTS/blob/main/ChatTTS/core.py`
Args:
result_list (List[torch.Tensor]): Audio codes output from `generate`.
Returns:
torch.Tensor: Mel spectrograms.
"""
decoder = self.dvae
max_x_len = -1
if len(result_list) == 0:
return np.array([], dtype=np.float32)
for result in result_list:
if result.size(0) > max_x_len:
max_x_len = result.size(0)
batch_result = torch.zeros(
(len(result_list), result_list[0].size(1), max_x_len),
dtype=result_list[0].dtype,
device=result_list[0].device,
)
for i in range(len(result_list)):
src = result_list[i]
batch_result[i].narrow(1, 0, src.size(0)).copy_(src.permute(1, 0))
del src
mel_specs = decoder(batch_result)
del batch_result
return mel_specs
# Borrowed from `https://github.com/2noise/ChatTTS/blob/main/ChatTTS/model/processors.py`
def gen_logits(
num_code: int,
top_P=0.7,
top_K=20,
repetition_penalty=1.0,
):
logits_warpers = []
if top_P is not None:
logits_warpers.append(TopPLogitsWarper(top_P, min_tokens_to_keep=3))
if top_K is not None:
logits_warpers.append(TopKLogitsWarper(top_K, min_tokens_to_keep=3))
logits_processors = []
if repetition_penalty is not None and repetition_penalty != 1:
logits_processors.append(CustomRepetitionPenaltyLogitsProcessorRepeat(repetition_penalty, num_code, 16))
return logits_warpers, logits_processors
# Copy and modified from transformers.models.llama.modeling_llama.LlamaForCausalLM.prepare_inputs_for_generation
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
cache_position=None,
position_ids=None,
use_cache=True,
**kwargs,
):
if past_key_values is not None:
if isinstance(past_key_values, Cache):
cache_length = past_key_values.get_seq_length()
past_length = past_key_values.seen_tokens
else:
cache_length = past_length = past_key_values[0][0].shape[2]
# Keep only the unprocessed tokens:
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
# some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
# input)
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
# input_ids based on the past_length.
elif past_length < input_ids.shape[1]:
input_ids = input_ids[:, past_length:]
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
# This clo≠clo≠clone call is needed to avoid recapturing cuda graphs with →rch.comπ≤→rch.comπ≤torch.compile's mode=reduce−overheadmode=reduce-overheadmode="reduce-overhead, as otherwise the input positionidspositionidsposition_ids would have various stride during the decoding. Here, simply using .contiguous().contiguous().contiguous() is not sufficient as in the batch size = 1 case, positionidspositionidsposition_ids is already contiguous but with varying stride which retriggers a capture.
position_ids = position_ids.clone(memory_format=torch.contiguous_format)
# if ∈putsembeds∈putsembedsinputs_embeds are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and cache_position[0] == 0:
model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
else:
# The clone here is for the same reason as for positionidspositionidsposition_ids.
model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None}
if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2:
if model_inputs["inputs_embeds"] is not None:
batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape
device = model_inputs["inputs_embeds"].device
else:
batch_size, sequence_length = model_inputs["input_ids"].shape
device = model_inputs["input_ids"].device
dtype = self.lm_head.weight.dtype
min_dtype = torch.finfo(dtype).min
attention_mask = _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=past_key_values.get_max_length(),
dtype=dtype,
device=device,
min_dtype=min_dtype,
cache_position=cache_position,
batch_size=batch_size,
)
model_inputs.update(
{
"position_ids": position_ids,
# "cache_position": cache_position,
"past_key_values": past_key_values,
"use_cache": use_cache,
"attention_mask": attention_mask,
}
)
return model_inputs