MiniCPM-V-2 / modeling_minicpmv.py
finalf0's picture
remove deepspeed
95a8b2d
import math
import json
import timm
import torch
import torchvision
from PIL import Image
from timm.data import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
from torchvision import transforms
from transformers import LlamaTokenizer
from transformers.integrations import is_deepspeed_zero3_enabled
from .configuration_minicpm import MiniCPMVConfig
from .modeling_minicpm import MiniCPMForCausalLM, MiniCPMPreTrainedModel
from .resampler import Resampler
from functools import partial
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union
from peft.utils.other import ModulesToSaveWrapper
class MiniCPMVPreTrainedModel(MiniCPMPreTrainedModel):
config_class = MiniCPMVConfig
class MiniCPMV(MiniCPMVPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.llm = MiniCPMForCausalLM(config)
self.vpm = self.init_vision_module()
self.vision_dim = self.vpm.embed_dim
self.embed_dim = self.llm.config.hidden_size
self.resampler = self.init_resampler(self.embed_dim, self.vision_dim)
self.transform = self.init_transform()
def init_vision_module(self):
model = timm.create_model(
self.config.vision_encoder,
pretrained=False,
num_classes=0,
dynamic_img_size=True,
dynamic_img_pad=True
)
if isinstance(model, timm.models.VisionTransformer):
if model.attn_pool is not None:
model.attn_pool = torch.nn.Identity()
if self.config.drop_vision_last_layer:
model.blocks = model.blocks[:-1]
return model
def init_resampler(self, embed_dim, vision_dim):
return Resampler(
grid_size=int(math.sqrt(self.config.query_num)),
embed_dim=embed_dim,
num_heads=embed_dim // 128,
kv_dim=vision_dim,
adaptive=True
)
def init_transform(self):
return transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize(
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD
),
]
)
def get_input_embeddings(self):
return self.llm.get_input_embeddings()
def set_input_embeddings(self, value):
self.llm.embed_tokens = value
def vpm_forward_features(self, pixel_value):
if isinstance(self.vpm, ModulesToSaveWrapper):
if self.vpm.disable_adapters or (self.vpm.active_adapter not in self.vpm.modules_to_save):
return self.vpm.original_module.forward_features(pixel_value)
return self.vpm.modules_to_save[self.vpm.active_adapter].forward_features(pixel_value)
else:
return self.vpm.forward_features(pixel_value)
def get_vision_embedding(self, pixel_values):
res = []
dtype = self.llm.lm_head.weight.dtype
def process_each_pixel(pixel_value, dtype, config, vpm, resampler):
H, W = pixel_value.shape[-2:]
target_size = (math.ceil(H / config.patch_size), math.ceil(W / config.patch_size))
vision_embedding = self.vpm_forward_features(pixel_value.unsqueeze(0).type(dtype))
if hasattr(vpm, 'num_prefix_tokens') and vpm.num_prefix_tokens > 0:
vision_embedding = vision_embedding[:, vpm.num_prefix_tokens:]
return resampler(vision_embedding, target_size)
for pixel_value in pixel_values:
result = process_each_pixel(pixel_value, dtype, self.config, self.vpm, self.resampler)
res.append(result)
return torch.vstack(res)
def get_vllm_embedding(self, data):
if "vision_hidden_states" not in data:
pixel_values_list = data["pixel_values"]
vision_hidden_states = []
for pixel_values in pixel_values_list:
if len(pixel_values) > 0:
vision_hidden_states.append(self.get_vision_embedding(pixel_values))
elif self.training:
dtype = self.llm.lm_head.weight.dtype
device = self.llm.lm_head.weight.device
dummy_image = torch.zeros(
(1, 3, 224, 224), device=device, dtype=dtype
)
vision_hidden_states.append(self.get_vision_embedding(dummy_image))
else:
vision_hidden_states.append([])
else:
vision_hidden_states = data["vision_hidden_states"]
vllm_embedding = (
self.llm.model.embed_tokens(data["input_ids"]) * self.llm.config.scale_emb
)
vision_hidden_states = [
i.type(vllm_embedding.dtype) if isinstance(i, torch.Tensor) else i
for i in vision_hidden_states
]
bs = len(data["input_ids"])
for i in range(bs):
cur_vs_hs = vision_hidden_states[i]
if len(cur_vs_hs) > 0:
cur_vllm_emb = vllm_embedding[i]
cur_image_bound = data["image_bound"][i]
if len(cur_image_bound) > 0:
image_indices = torch.stack(
[
torch.arange(r[0], r[1], dtype=torch.long)
for r in cur_image_bound
]
).to(vllm_embedding.device)
cur_vllm_emb.scatter_(
0,
image_indices.view(-1, 1).repeat(1, cur_vllm_emb.shape[-1]),
cur_vs_hs.view(-1, cur_vs_hs.shape[-1]),
)
elif self.training:
cur_vllm_emb += cur_vs_hs[0].mean() * 0
return vllm_embedding, vision_hidden_states
def forward(self, data, **kwargs):
vllm_embedding, vision_hidden_states = self.get_vllm_embedding(data)
position_ids = data["position_ids"]
if position_ids.dtype != torch.int64:
position_ids = position_ids.long()
return self.llm(
input_ids=None,
position_ids=position_ids,
inputs_embeds=vllm_embedding,
**kwargs
)
def _convert_to_tensors(
self, tokenizer, input_str, max_inp_length: Optional[int] = None
):
if tokenizer.add_bos_token:
input_ids = tokenizer.encode(input_str)
else:
input_ids = [tokenizer.bos_id] + tokenizer.encode(input_str)
if max_inp_length is not None:
input_ids = input_ids[:max_inp_length]
input_ids = torch.tensor(input_ids, dtype=torch.int32)
image_start_tokens = torch.where(input_ids == tokenizer.im_start_id)[0]
# 跳过 im_start
image_start_tokens += 1
image_end_tokens = torch.where(input_ids == tokenizer.im_end_id)[0]
valid_image_nums = max(len(image_start_tokens), len(image_end_tokens))
image_bound = torch.hstack(
[
image_start_tokens[:valid_image_nums].unsqueeze(-1),
image_end_tokens[:valid_image_nums].unsqueeze(-1),
]
)
model_input = {}
model_input["input_ids"] = input_ids.unsqueeze(0).to(self.device)
model_input["image_bound"] = image_bound
return model_input
def _process_list(
self, tokenizer, data_list: List[str], max_inp_length: Optional[int] = None
):
pad_keys = ["input_ids"]
input_tensors = []
for data in data_list:
input_tensors.append(
self._convert_to_tensors(tokenizer, data, max_inp_length)
)
padded = {}
for key in pad_keys:
padded[key] = pad(input_tensors, key, padding_side="left").to(self.device)
padded["image_bound"] = [i["image_bound"] for i in input_tensors]
return padded
def _decode(self, inputs_embeds, tokenizer, **kwargs):
output = self.llm.generate(
inputs_embeds=inputs_embeds,
pad_token_id=0,
eos_token_id=tokenizer.eos_token_id,
**kwargs
)
return self._decode_text(output, tokenizer)
def _decode_text(self, result_ids, tokenizer):
result_text = []
for result in result_ids:
result = result[result != 0]
if result[0] == tokenizer.bos_id:
result = result[1:]
if result[-1] == tokenizer.eos_id:
result = result[:-1]
result_text.append(tokenizer.decode(result).strip())
return result_text
def slice_image(self, image):
return slice_image(
image,
self.config.max_slice_nums,
self.config.scale_resolution,
self.config.patch_size,
)
def get_slice_image_placeholder(self, image, tokenizer):
image_placeholder = (
tokenizer.im_start
+ tokenizer.unk_token * self.config.query_num
+ tokenizer.im_end
)
slice_images = []
source_image, patches, best_grid = slice_image(
image,
self.config.max_slice_nums,
self.config.scale_resolution,
self.config.patch_size,
)
slice_images.append(source_image)
final_placeholder = image_placeholder
if len(patches) > 0:
for i in range(len(patches)):
for j in range(len(patches[0])):
slice_images.append(patches[i][j])
final_placeholder += get_grid_placeholder(
tokenizer, best_grid, self.config.query_num
)
return slice_images, final_placeholder
def generate(
self,
data_list=None,
img_list=None,
tokenizer=None,
max_inp_length: Optional[int] = None,
vision_hidden_states=None,
return_vision_hidden_states=False,
**kwargs
):
assert data_list is not None
bs = len(data_list)
if img_list == None:
img_list = [[] for i in range(bs)]
assert bs == len(img_list)
model_inputs = self._process_list(tokenizer, data_list, max_inp_length)
if vision_hidden_states is None:
pixel_values = []
for i in range(bs):
img_inps = []
for img in img_list[i]:
img_inps.append(self.transform(img).to(self.device))
if img_inps:
pixel_values.append(img_inps)
else:
pixel_values.append([])
model_inputs["pixel_values"] = pixel_values
else:
model_inputs["vision_hidden_states"] = vision_hidden_states
with torch.inference_mode():
(
model_inputs["inputs_embeds"],
vision_hidden_states,
) = self.get_vllm_embedding(model_inputs)
result = self._decode(model_inputs["inputs_embeds"], tokenizer, **kwargs)
if return_vision_hidden_states:
return result, vision_hidden_states
return result
def chat(
self,
image,
msgs,
context,
tokenizer,
vision_hidden_states=None,
max_new_tokens=1024,
sampling=True,
max_inp_length=2048,
**kwargs
):
if isinstance(msgs, str):
msgs = json.loads(msgs)
# msgs to prompt
prompt = ""
for i, msg in enumerate(msgs):
role = msg["role"]
content = msg["content"]
assert role in ["user", "assistant"]
if i == 0:
assert role == "user", "The role of first msg should be user"
if self.config.slice_mode:
images, final_placeholder = self.get_slice_image_placeholder(
image, tokenizer
)
content = final_placeholder + "\n" + content
else:
images = [image]
content = (
tokenizer.im_start
+ tokenizer.unk_token * self.config.query_num
+ tokenizer.im_end
+ "\n"
+ content
)
prompt += "<用户>" if role == "user" else "<AI>"
prompt += content
prompt += "<AI>"
final_input = prompt
if sampling:
generation_config = {
"top_p": 0.8,
"top_k": 100,
"temperature": 0.7,
"do_sample": True,
"repetition_penalty": 1.05
}
else:
generation_config = {
"num_beams": 3,
"repetition_penalty": 1.2,
}
generation_config.update(
(k, kwargs[k]) for k in generation_config.keys() & kwargs.keys()
)
with torch.inference_mode():
res, vision_hidden_states = self.generate(
data_list=[final_input],
max_inp_length=max_inp_length,
img_list=[images],
tokenizer=tokenizer,
max_new_tokens=max_new_tokens,
vision_hidden_states=vision_hidden_states,
return_vision_hidden_states=True,
**generation_config
)
answer = res[0]
context = msgs.copy()
context.append({"role": "assistant", "content": answer})
return answer, context, generation_config
class LlamaTokenizerWrapper(LlamaTokenizer):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.im_start = "<image>"
self.im_end = "</image>"
self.ref_start = "<ref>"
self.ref_end = "</ref>"
self.box_start = "<box>"
self.box_end = "</box>"
self.quad_start = "<quad>"
self.quad_end = "</quad>"
self.point_start = "<point>"
self.point_end = "</point>"
self.slice_start = "<slice>"
self.slice_end = "</slice>"
@property
def eos_id(self):
return self.sp_model.eos_id()
@property
def bos_id(self):
return self.sp_model.bos_id()
@property
def unk_id(self):
return self.sp_model.unk_id()
@property
def im_start_id(self):
return self._convert_token_to_id(self.im_start)
@property
def im_end_id(self):
return self._convert_token_to_id(self.im_end)
def pad(orig_items, key, max_length=None, padding_value=0, padding_side="left"):
items = []
if isinstance(orig_items[0][key], list):
assert isinstance(orig_items[0][key][0], torch.Tensor)
for it in orig_items:
for tr in it[key]:
items.append({key: tr})
else:
assert isinstance(orig_items[0][key], torch.Tensor)
items = orig_items
batch_size = len(items)
shape = items[0][key].shape
dim = len(shape)
assert dim <= 3
if max_length is None:
max_length = 0
max_length = max(max_length, max(item[key].shape[-1] for item in items))
min_length = min(item[key].shape[-1] for item in items)
dtype = items[0][key].dtype
if dim == 1:
return torch.cat([item[key] for item in items], dim=0)
elif dim == 2:
if max_length == min_length:
return torch.cat([item[key] for item in items], dim=0)
tensor = torch.zeros((batch_size, max_length), dtype=dtype) + padding_value
else:
tensor = (
torch.zeros((batch_size, max_length, shape[-1]), dtype=dtype)
+ padding_value
)
for i, item in enumerate(items):
if dim == 2:
if padding_side == "left":
tensor[i, -len(item[key][0]) :] = item[key][0].clone()
else:
tensor[i, : len(item[key][0])] = item[key][0].clone()
elif dim == 3:
if padding_side == "left":
tensor[i, -len(item[key][0]) :, :] = item[key][0].clone()
else:
tensor[i, : len(item[key][0]), :] = item[key][0].clone()
return tensor
def slice_image(
image, max_slice_nums=9, scale_resolution=448, patch_size=14, never_split=False
):
original_size = image.size
original_width, original_height = original_size
log_ratio = math.log(original_width / original_height)
ratio = original_width * original_height / (scale_resolution * scale_resolution)
multiple = min(math.ceil(ratio), max_slice_nums)
source_image = None
best_grid = None
patches = []
if multiple <= 1 or never_split:
# dont need to slice, upsample
best_size = find_best_resize(
original_size, scale_resolution, patch_size, allow_upscale=True
)
source_image = image.resize(best_size, Image.Resampling.BICUBIC)
else:
candidate_split_grids_nums = []
for i in [multiple - 1, multiple, multiple + 1]:
if i == 1 or i > max_slice_nums:
continue
candidate_split_grids_nums.append(i)
# source image, down-sampling and ensure divided by patch_size
best_resize = find_best_resize(original_size, scale_resolution, patch_size)
source_image = image.copy().resize(best_resize, Image.Resampling.BICUBIC)
candidate_grids = []
# find best grid
for split_grids_nums in candidate_split_grids_nums:
m = 1
while m <= split_grids_nums:
if split_grids_nums % m == 0:
candidate_grids.append([m, split_grids_nums // m])
m += 1
best_grid = [1, 1]
min_error = float("inf")
for grid in candidate_grids:
error = abs(log_ratio - math.log(grid[0] / grid[1]))
if error < min_error:
best_grid = grid
min_error = error
refine_size = get_refine_size(
original_size, best_grid, scale_resolution, patch_size, allow_upscale=True
)
refine_image = image.resize(refine_size, Image.Resampling.BICUBIC)
patches = split_to_patches(refine_image, best_grid)
return source_image, patches, best_grid
def ensure_divide(length, patch_size):
return max(round(length / patch_size) * patch_size, patch_size)
def find_best_resize(original_size, scale_resolution, patch_size, allow_upscale=False):
width, height = original_size
if (width * height > scale_resolution * scale_resolution) or allow_upscale:
r = width / height
height = int(scale_resolution / math.sqrt(r))
width = int(height * r)
best_width = ensure_divide(width, patch_size)
best_height = ensure_divide(height, patch_size)
return (best_width, best_height)
def get_refine_size(
original_size, grid, scale_resolution, patch_size, allow_upscale=False
):
width, height = original_size
grid_x, grid_y = grid
refine_width = ensure_divide(width, grid_x)
refine_height = ensure_divide(height, grid_y)
grid_width = refine_width / grid_x
grid_height = refine_height / grid_y
best_grid_size = find_best_resize(
(grid_width, grid_height),
scale_resolution,
patch_size,
allow_upscale=allow_upscale,
)
refine_size = (best_grid_size[0] * grid_x, best_grid_size[1] * grid_y)
return refine_size
def split_to_patches(image, grid):
patches = []
width, height = image.size
grid_x = int(width / grid[0])
grid_y = int(height / grid[1])
for i in range(0, height, grid_y):
images = []
for j in range(0, width, grid_x):
box = (j, i, j + grid_x, i + grid_y)
patch = image.crop(box)
images.append(patch)
patches.append(images)
return patches
def get_grid_placeholder(tokenizer, grid, query_num):
image_placeholder = (
tokenizer.im_start + tokenizer.unk_token * query_num + tokenizer.im_end
)
cols = grid[0]
rows = grid[1]
slices = []
for i in range(rows):
lines = []
for j in range(cols):
lines.append(image_placeholder)
slices.append("".join(lines))
slice_placeholder = tokenizer.slice_start + "\n".join(slices) + tokenizer.slice_end
return slice_placeholder