|
--- |
|
license: mit |
|
base_model: |
|
- UsefulSensors/moonshine-base |
|
library_name: transformers.js |
|
pipeline_tag: automatic-speech-recognition |
|
--- |
|
|
|
|
|
## Usage |
|
|
|
### Transformers.js |
|
|
|
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using: |
|
```bash |
|
npm i @huggingface/transformers |
|
``` |
|
|
|
**Example:** Automatic speech recognition w/ Moonshine base. |
|
```js |
|
import { pipeline } from "@huggingface/transformers"; |
|
|
|
const transcriber = await pipeline("automatic-speech-recognition", "onnx-community/moonshine-base-ONNX"); |
|
const output = await transcriber("https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/jfk.wav"); |
|
console.log(output); |
|
// { text: 'And so my fellow Americans ask not what your country can do for you as what you can do for your country.' } |
|
``` |
|
|
|
### ONNXRuntime |
|
|
|
```py |
|
import numpy as np |
|
import onnxruntime as ort |
|
from transformers import AutoConfig, AutoTokenizer |
|
import librosa |
|
|
|
# Load config and tokenizer |
|
model_id = 'onnx-community/moonshine-base-ONNX' |
|
config = AutoConfig.from_pretrained(model_id) |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
# Load encoder and decoder sessions |
|
encoder_session = ort.InferenceSession('./onnx/encoder_model_quantized.onnx') |
|
decoder_session = ort.InferenceSession('./onnx/decoder_model_merged_quantized.onnx') |
|
|
|
# Set config values |
|
eos_token_id = config.eos_token_id |
|
num_key_value_heads = config.decoder_num_key_value_heads |
|
dim_kv = config.hidden_size // config.decoder_num_attention_heads |
|
|
|
# Load audio |
|
audio_file = 'jfk.wav' |
|
audio = librosa.load(audio_file, sr=16_000)[0][None] |
|
|
|
# Run encoder |
|
encoder_outputs = encoder_session.run(None, dict(input_values=audio))[0] |
|
|
|
# Prepare decoder inputs |
|
batch_size = encoder_outputs.shape[0] |
|
input_ids = np.array([[config.decoder_start_token_id]] * batch_size) |
|
past_key_values = { |
|
f'past_key_values.{layer}.{module}.{kv}': np.zeros([batch_size, num_key_value_heads, 0, dim_kv], dtype=np.float32) |
|
for layer in range(config.decoder_num_hidden_layers) |
|
for module in ('decoder', 'encoder') |
|
for kv in ('key', 'value') |
|
} |
|
|
|
# max 6 tokens per second of audio |
|
max_len = min((audio.shape[-1] // 16_000) * 6, config.max_position_embeddings) |
|
|
|
generated_tokens = input_ids |
|
for i in range(max_len): |
|
use_cache_branch = i > 0 |
|
logits, *present_key_values = decoder_session.run(None, dict( |
|
input_ids=generated_tokens[:, -1:], |
|
encoder_hidden_states=encoder_outputs, |
|
use_cache_branch=[use_cache_branch], |
|
**past_key_values, |
|
)) |
|
next_tokens = logits[:, -1].argmax(-1, keepdims=True) |
|
for j, key in enumerate(past_key_values): |
|
if not use_cache_branch or 'decoder' in key: |
|
past_key_values[key] = present_key_values[j] |
|
generated_tokens = np.concatenate([generated_tokens, next_tokens], axis=-1) |
|
if (next_tokens == eos_token_id).all(): |
|
break |
|
|
|
result = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) |
|
print(result) |
|
``` |
|
|