Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,266 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
library_name: transformers.js
|
4 |
+
base_model: Qwen/Qwen2-VL-2B-Instruct
|
5 |
+
---
|
6 |
+
|
7 |
+
https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct with ONNX weights to be compatible with Transformers.js.
|
8 |
+
|
9 |
+
## Usage (Transformers.js)
|
10 |
+
|
11 |
+
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
|
12 |
+
```bash
|
13 |
+
npm i @huggingface/transformers
|
14 |
+
```
|
15 |
+
|
16 |
+
**Example:** TODO
|
17 |
+
|
18 |
+
|
19 |
+
## ONNX conversion script:
|
20 |
+
First, install the following dependencies:
|
21 |
+
```sh
|
22 |
+
pip install --upgrade git+https://github.com/huggingface/transformers.git@xenova-patch-2 onnx==1.17.0 onnxruntime==1.20.1 optimum==1.23.3 onnxslim==0.1.42
|
23 |
+
```
|
24 |
+
|
25 |
+
```py
|
26 |
+
import os
|
27 |
+
import torch
|
28 |
+
from transformers import (
|
29 |
+
AutoProcessor,
|
30 |
+
Qwen2VLForConditionalGeneration,
|
31 |
+
DynamicCache,
|
32 |
+
)
|
33 |
+
|
34 |
+
|
35 |
+
class PatchedQwen2VLForConditionalGeneration(Qwen2VLForConditionalGeneration):
|
36 |
+
def forward(self, *args):
|
37 |
+
inputs_embeds, attention_mask, position_ids, *past_key_values_args = args
|
38 |
+
|
39 |
+
# Convert past_key_values list to DynamicCache
|
40 |
+
if len(past_key_values_args) == 0:
|
41 |
+
past_key_values = None
|
42 |
+
else:
|
43 |
+
past_key_values = DynamicCache(self.config.num_hidden_layers)
|
44 |
+
for i in range(self.config.num_hidden_layers):
|
45 |
+
key = past_key_values_args.pop(0)
|
46 |
+
value = past_key_values_args.pop(0)
|
47 |
+
past_key_values.update(key_states=key, value_states=value, layer_idx=i)
|
48 |
+
|
49 |
+
o = super().forward(
|
50 |
+
inputs_embeds=inputs_embeds,
|
51 |
+
attention_mask=attention_mask,
|
52 |
+
position_ids=position_ids,
|
53 |
+
past_key_values=past_key_values,
|
54 |
+
)
|
55 |
+
|
56 |
+
flattened_past_key_values_outputs = {
|
57 |
+
"logits": o.logits,
|
58 |
+
}
|
59 |
+
output_past_key_values: DynamicCache = o.past_key_values
|
60 |
+
for i, (key, value) in enumerate(
|
61 |
+
zip(output_past_key_values.key_cache, output_past_key_values.value_cache)
|
62 |
+
):
|
63 |
+
flattened_past_key_values_outputs[f"present.{i}.key"] = key
|
64 |
+
flattened_past_key_values_outputs[f"present.{i}.value"] = value
|
65 |
+
|
66 |
+
return flattened_past_key_values_outputs
|
67 |
+
|
68 |
+
|
69 |
+
# Constants
|
70 |
+
OUTPUT_FOLDER = "output"
|
71 |
+
EMBEDDING_MODEL_NAME = "embed_tokens.onnx"
|
72 |
+
TEXT_MODEL_NAME = "decoder_model_merged.onnx"
|
73 |
+
VISION_MODEL_NAME = "vision_encoder.onnx"
|
74 |
+
TEMP_MODEL_OUTPUT_FOLDER = os.path.join(OUTPUT_FOLDER, "temp")
|
75 |
+
FINAL_MODEL_OUTPUT_FOLDER = os.path.join(OUTPUT_FOLDER, "onnx")
|
76 |
+
|
77 |
+
|
78 |
+
# Load model and processor
|
79 |
+
model_id = "Qwen/Qwen2-VL-2B-Instruct"
|
80 |
+
model = PatchedQwen2VLForConditionalGeneration.from_pretrained(model_id).eval()
|
81 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
82 |
+
|
83 |
+
|
84 |
+
# Save model configs and processor
|
85 |
+
model.config.save_pretrained(OUTPUT_FOLDER)
|
86 |
+
model.generation_config.save_pretrained(OUTPUT_FOLDER)
|
87 |
+
processor.save_pretrained(OUTPUT_FOLDER)
|
88 |
+
os.makedirs(TEMP_MODEL_OUTPUT_FOLDER, exist_ok=True)
|
89 |
+
|
90 |
+
|
91 |
+
# Configuration values
|
92 |
+
## Text model
|
93 |
+
text_config = model.config
|
94 |
+
num_heads = text_config.num_attention_heads
|
95 |
+
num_key_value_heads = text_config.num_key_value_heads
|
96 |
+
head_dim = text_config.hidden_size // num_heads
|
97 |
+
num_layers = text_config.num_hidden_layers
|
98 |
+
hidden_size = text_config.hidden_size
|
99 |
+
|
100 |
+
## Vision model
|
101 |
+
vision_config = model.config.vision_config
|
102 |
+
channel = vision_config.in_chans
|
103 |
+
temporal_patch_size = vision_config.temporal_patch_size
|
104 |
+
patch_size = vision_config.spatial_patch_size
|
105 |
+
|
106 |
+
|
107 |
+
# Dummy input sizes
|
108 |
+
grid_t, grid_h, grid_w = [1, 16, 16]
|
109 |
+
batch_size = 1
|
110 |
+
sequence_length = 16
|
111 |
+
num_channels = 3
|
112 |
+
past_sequence_length = 0
|
113 |
+
|
114 |
+
image_batch_size = 1 # TODO: Add support for > 1 images
|
115 |
+
assert image_batch_size == 1
|
116 |
+
|
117 |
+
|
118 |
+
# Dummy inputs
|
119 |
+
## Embedding inputs
|
120 |
+
input_ids = torch.randint(
|
121 |
+
0, model.config.vocab_size, (batch_size, sequence_length), dtype=torch.int64
|
122 |
+
)
|
123 |
+
|
124 |
+
## Text inputs
|
125 |
+
dummy_past_key_values_kwargs = {
|
126 |
+
f"past_key_values.{i}.{key}": torch.zeros(
|
127 |
+
batch_size,
|
128 |
+
num_key_value_heads,
|
129 |
+
past_sequence_length,
|
130 |
+
head_dim,
|
131 |
+
dtype=torch.float32,
|
132 |
+
)
|
133 |
+
for i in range(num_layers)
|
134 |
+
for key in ["key", "value"]
|
135 |
+
}
|
136 |
+
inputs_embeds = torch.ones(
|
137 |
+
batch_size, sequence_length, hidden_size, dtype=torch.float32
|
138 |
+
)
|
139 |
+
attention_mask = torch.ones(batch_size, sequence_length, dtype=torch.int64)
|
140 |
+
position_ids = torch.ones(3, batch_size, sequence_length, dtype=torch.int64)
|
141 |
+
|
142 |
+
## Vision inputs
|
143 |
+
grid_thw = torch.tensor(
|
144 |
+
[[grid_t, grid_h, grid_w]] * image_batch_size, dtype=torch.int64
|
145 |
+
)
|
146 |
+
pixel_values = torch.randn(
|
147 |
+
image_batch_size * grid_t * grid_h * grid_w,
|
148 |
+
channel * temporal_patch_size * patch_size * patch_size,
|
149 |
+
dtype=torch.float32,
|
150 |
+
)
|
151 |
+
|
152 |
+
|
153 |
+
# ONNX Exports
|
154 |
+
## Embedding model
|
155 |
+
embedding_inputs = dict(input_ids=input_ids)
|
156 |
+
embedding_inputs_positional = tuple(embedding_inputs.values())
|
157 |
+
model.model.embed_tokens(*embedding_inputs_positional) # Test forward pass
|
158 |
+
EMBED_TOKENS_OUTPUT_PATH = os.path.join(TEMP_MODEL_OUTPUT_FOLDER, EMBEDDING_MODEL_NAME)
|
159 |
+
torch.onnx.export(
|
160 |
+
model.model.embed_tokens,
|
161 |
+
args=embedding_inputs_positional,
|
162 |
+
f=EMBED_TOKENS_OUTPUT_PATH,
|
163 |
+
export_params=True,
|
164 |
+
opset_version=14,
|
165 |
+
do_constant_folding=True,
|
166 |
+
input_names=list(embedding_inputs.keys()),
|
167 |
+
output_names=["inputs_embeds"],
|
168 |
+
dynamic_axes={
|
169 |
+
"input_ids": {0: "batch_size", 1: "sequence_length"},
|
170 |
+
"inputs_embeds": {0: "batch_size", 1: "sequence_length"},
|
171 |
+
},
|
172 |
+
)
|
173 |
+
|
174 |
+
## Text model
|
175 |
+
text_inputs = dict(
|
176 |
+
inputs_embeds=inputs_embeds,
|
177 |
+
attention_mask=attention_mask,
|
178 |
+
position_ids=position_ids,
|
179 |
+
**dummy_past_key_values_kwargs,
|
180 |
+
)
|
181 |
+
text_inputs_positional = tuple(text_inputs.values())
|
182 |
+
text_outputs = model.forward(*text_inputs_positional) # Test forward pass
|
183 |
+
TEXT_MODEL_OUTPUT_PATH=os.path.join(TEMP_MODEL_OUTPUT_FOLDER, TEXT_MODEL_NAME)
|
184 |
+
torch.onnx.export(
|
185 |
+
model,
|
186 |
+
args=text_inputs_positional,
|
187 |
+
f=TEXT_MODEL_OUTPUT_PATH,
|
188 |
+
export_params=True,
|
189 |
+
opset_version=14,
|
190 |
+
do_constant_folding=True,
|
191 |
+
input_names=list(text_inputs.keys()),
|
192 |
+
output_names=["logits"]
|
193 |
+
+ [f"present.{i}.{key}" for i in range(num_layers) for key in ["key", "value"]],
|
194 |
+
dynamic_axes={
|
195 |
+
"inputs_embeds": {0: "batch_size", 1: "sequence_length"},
|
196 |
+
"attention_mask": {0: "batch_size", 1: "sequence_length"},
|
197 |
+
"position_ids": {1: "batch_size", 2: "sequence_length"},
|
198 |
+
**{
|
199 |
+
f"past_key_values.{i}.{key}": {0: "batch_size", 2: "past_sequence_length"}
|
200 |
+
for i in range(num_layers)
|
201 |
+
for key in ["key", "value"]
|
202 |
+
},
|
203 |
+
"logits": {0: "batch_size", 1: "sequence_length"},
|
204 |
+
**{
|
205 |
+
f"present.{i}.{key}": {0: "batch_size", 2: "past_sequence_length + 1"}
|
206 |
+
for i in range(num_layers)
|
207 |
+
for key in ["key", "value"]
|
208 |
+
},
|
209 |
+
},
|
210 |
+
)
|
211 |
+
|
212 |
+
## Vision model
|
213 |
+
vision_inputs = dict(
|
214 |
+
pixel_values=pixel_values,
|
215 |
+
grid_thw=grid_thw,
|
216 |
+
)
|
217 |
+
vision_inputs_positional = tuple(vision_inputs.values())
|
218 |
+
vision_outputs = model.visual.forward(*vision_inputs_positional) # Test forward pass
|
219 |
+
VISION_ENCODER_OUTPUT_PATH = os.path.join(TEMP_MODEL_OUTPUT_FOLDER, VISION_MODEL_NAME)
|
220 |
+
torch.onnx.export(
|
221 |
+
model.visual,
|
222 |
+
args=vision_inputs_positional,
|
223 |
+
f=VISION_ENCODER_OUTPUT_PATH,
|
224 |
+
export_params=True,
|
225 |
+
opset_version=14,
|
226 |
+
do_constant_folding=True,
|
227 |
+
input_names=list(vision_inputs.keys()),
|
228 |
+
output_names=["image_features"],
|
229 |
+
dynamic_axes={
|
230 |
+
"pixel_values": {
|
231 |
+
0: "batch_size * grid_t * grid_h * grid_w",
|
232 |
+
1: "channel * temporal_patch_size * patch_size * patch_size",
|
233 |
+
},
|
234 |
+
"grid_thw": {0: "batch_size"},
|
235 |
+
"image_features": {0: "batch_size * grid_t * grid_h * grid_w"},
|
236 |
+
},
|
237 |
+
)
|
238 |
+
|
239 |
+
|
240 |
+
# Post-processing
|
241 |
+
import onnx
|
242 |
+
import onnxslim
|
243 |
+
from optimum.onnx.graph_transformations import check_and_save_model
|
244 |
+
|
245 |
+
os.makedirs(FINAL_MODEL_OUTPUT_FOLDER, exist_ok=True)
|
246 |
+
for name in (EMBEDDING_MODEL_NAME, TEXT_MODEL_NAME, VISION_MODEL_NAME):
|
247 |
+
temp_model_path = os.path.join(TEMP_MODEL_OUTPUT_FOLDER, name)
|
248 |
+
|
249 |
+
## Shape inference (especially needed by the vision encoder)
|
250 |
+
onnx.shape_inference.infer_shapes_path(temp_model_path, check_type=True, strict_mode=True)
|
251 |
+
|
252 |
+
## Attempt to optimize the model with onnxslim
|
253 |
+
try:
|
254 |
+
model = onnxslim.slim(temp_model_path)
|
255 |
+
except Exception as e:
|
256 |
+
print(f"Failed to slim {model}: {e}")
|
257 |
+
model = onnx.load(temp_model_path)
|
258 |
+
|
259 |
+
## Save model
|
260 |
+
final_model_path = os.path.join(FINAL_MODEL_OUTPUT_FOLDER, name)
|
261 |
+
check_and_save_model(model, final_model_path)
|
262 |
+
|
263 |
+
## Cleanup
|
264 |
+
import shutil
|
265 |
+
shutil.rmtree(TEMP_MODEL_OUTPUT_FOLDER)
|
266 |
+
```
|