LFM2-2.6B-Exp
LFM2-2.6B-Exp is an experimental checkpoint built on LFM2-2.6B using pure reinforcement learning.
Specifically trained on instruction following, knowledge, and math, it delivers particularly strong performance compared to other 3B models. In particular, its IFBench score surpasses DeepSeek R1-0528, a model 263 times larger.
Find more information about LFM2 in our blog post.
π Model details
Due to their small size, we recommend fine-tuning LFM2 models on narrow use cases to maximize performance. They are particularly suited for agentic tasks, data extraction, RAG, creative writing, and multi-turn conversations. However, we do not recommend using them for tasks that are knowledge-intensive or require programming skills.
| Property | LFM2-350M | LFM2-700M | LFM2-1.2B | LFM2-2.6B |
|---|---|---|---|---|
| Parameters | 354,483,968 | 742,489,344 | 1,170,340,608 | 2,569,272,320 |
| Layers | 16 (10 conv + 6 attn) | 16 (10 conv + 6 attn) | 16 (10 conv + 6 attn) | 30 (22 conv + 8 attn) |
| Context length | 32,768 tokens | 32,768 tokens | 32,768 tokens | 32,768 tokens |
| Vocabulary size | 65,536 | 65,536 | 65,536 | 65,536 |
| Precision | bfloat16 | bfloat16 | bfloat16 | bfloat16 |
| Training budget | 10 trillion tokens | 10 trillion tokens | 10 trillion tokens | 10 trillion tokens |
| License | LFM Open License v1.0 | LFM Open License v1.0 | LFM Open License v1.0 | LFM Open License v1.0 |
Supported languages: English, Arabic, Chinese, French, German, Japanese, Korean, and Spanish.
Generation parameters: We recommend the following parameters:
temperature=0.3min_p=0.15repetition_penalty=1.05
Chat template: LFM2 uses a ChatML-like chat template as follows:
<|startoftext|><|im_start|>system
You are a helpful assistant trained by Liquid AI.<|im_end|>
<|im_start|>user
What is C. elegans?<|im_end|>
<|im_start|>assistant
It's a tiny nematode that lives in temperate soil environments.<|im_end|>
You can automatically apply it using the dedicated .apply_chat_template() function from Hugging Face transformers.
Tool use: It consists of four main steps:
- Function definition: LFM2 takes JSON function definitions as input (JSON objects between
<|tool_list_start|>and<|tool_list_end|>special tokens), usually in the system prompt - Function call: LFM2 writes Pythonic function calls (a Python list between
<|tool_call_start|>and<|tool_call_end|>special tokens), as the assistant answer. - Function execution: The function call is executed and the result is returned (string between
<|tool_response_start|>and<|tool_response_end|>special tokens), as a "tool" role. - Final answer: LFM2 interprets the outcome of the function call to address the original user prompt in plain text.
Here is a simple example of a conversation using tool use:
<|startoftext|><|im_start|>system
List of tools: <|tool_list_start|>[{"name": "get_candidate_status", "description": "Retrieves the current status of a candidate in the recruitment process", "parameters": {"type": "object", "properties": {"candidate_id": {"type": "string", "description": "Unique identifier for the candidate"}}, "required": ["candidate_id"]}}]<|tool_list_end|><|im_end|>
<|im_start|>user
What is the current status of candidate ID 12345?<|im_end|>
<|im_start|>assistant
<|tool_call_start|>[get_candidate_status(candidate_id="12345")]<|tool_call_end|>Checking the current status of candidate ID 12345.<|im_end|>
<|im_start|>tool
<|tool_response_start|>[{"candidate_id": "12345", "status": "Interview Scheduled", "position": "Clinical Research Associate", "date": "2023-11-20"}]<|tool_response_end|><|im_end|>
<|im_start|>assistant
The candidate with ID 12345 is currently in the "Interview Scheduled" stage for the position of Clinical Research Associate, with an interview date set for 2023-11-20.<|im_end|>
You can directly pass tools as JSON schema or Python functions with .apply_chat_template() as shown in this page to automatically format the system prompt.
Architecture: Hybrid model with multiplicative gates and short convolutions: 10 double-gated short-range LIV convolution blocks and 6 grouped query attention (GQA) blocks.
Pre-training mixture: Approximately 75% English, 20% multilingual, and 5% code data sourced from the web and licensed materials.
Training approach:
- Very large-scale SFT on 50% downstream tasks, 50% general domains
- Custom DPO with length normalization and semi-online datasets
- Iterative model merging
- Reinforcement learning with verifiable rewards
π How to run LFM2
1. ONNXRuntime
from transformers import AutoConfig, AutoTokenizer
import onnxruntime
import numpy as np
from huggingface_hub import hf_hub_download
# 1. Load config, processor, and model
model_id = "onnx-community/LFM2-2.6B-Exp-ONNX"
config = AutoConfig.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
filename = "model_q4.onnx" # Options: "model.onnx", "model_fp16.onnx", "model_q4.onnx", "model_q4f16.onnx"
model_path = hf_hub_download(repo_id=model_id, filename=f"onnx/{filename}") # Download the graph
hf_hub_download(repo_id=model_id, filename=f"onnx/{filename}_data") # Download the weights
session = onnxruntime.InferenceSession(model_path)
## Set config values
num_key_value_heads = config.num_key_value_heads
head_dim = config.hidden_size // config.num_attention_heads
num_hidden_layers = config.num_hidden_layers
eos_token_id = config.eos_token_id
hidden_size = config.hidden_size
conv_L_cache = config.conv_L_cache
layer_types = config.layer_types
# 2. Prepare inputs
prompt = "What is C. elegans?"
messages = [{"role": "user", "content": prompt}]
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="np")
input_ids = inputs['input_ids']
attention_mask = inputs['attention_mask']
batch_size = input_ids.shape[0]
past_cache_values = {}
for i in range(num_hidden_layers):
if layer_types[i] == 'full_attention':
for kv in ('key', 'value'):
past_cache_values[f'past_key_values.{i}.{kv}'] = np.zeros([batch_size, num_key_value_heads, 0, head_dim], dtype=np.float32)
elif layer_types[i] == 'conv':
past_cache_values[f'past_conv.{i}'] = np.zeros([batch_size, hidden_size, conv_L_cache], dtype=np.float32)
else:
raise ValueError(f"Unsupported layer type: {layer_types[i]}")
# 3. Generation loop
max_new_tokens = 1024
generated_tokens = np.array([[]], dtype=np.int64)
for i in range(max_new_tokens):
logits, *present_cache_values = session.run(None, dict(
input_ids=input_ids,
attention_mask=attention_mask,
**past_cache_values,
))
## Update values for next generation loop
input_ids = logits[:, -1].argmax(-1, keepdims=True)
attention_mask = np.concatenate([attention_mask, np.ones_like(input_ids, dtype=np.int64)], axis=-1)
for j, key in enumerate(past_cache_values):
past_cache_values[key] = present_cache_values[j]
generated_tokens = np.concatenate([generated_tokens, input_ids], axis=-1)
if (input_ids == eos_token_id).all():
break
## (Optional) Streaming
print(tokenizer.decode(input_ids[0]), end='', flush=True)
print()
# 4. Output result
print(tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0])
π§ How to fine-tune LFM2
We recommend fine-tuning LFM2 models on your use cases to maximize performance.
π¬ Contact
If you are interested in custom solutions with edge deployment, please contact our sales team.
Citation
@article{liquidai2025lfm2,
title={LFM2 Technical Report},
author={Liquid AI},
journal={arXiv preprint arXiv:2511.23404},
year={2025}
}
- Downloads last month
- 47
Model tree for onnx-community/LFM2-2.6B-Exp-ONNX
Base model
LiquidAI/LFM2-2.6B-Exp
