File size: 3,018 Bytes
1fddbe5
 
ac82578
1fddbe5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac82578
1fddbe5
 
 
 
 
 
 
ac82578
1fddbe5
ac82578
 
1fddbe5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac82578
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fddbe5
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
---
license: apache-2.0
base_model: microsoft/swin-large-patch4-window7-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: Boya1_SGD_1e3_20Epoch_Swin-large-224_fold1
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.3288080369264187
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Boya1_SGD_1e3_20Epoch_Swin-large-224_fold1

This model is a fine-tuned version of [microsoft/swin-large-patch4-window7-224](https://huggingface.co/microsoft/swin-large-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1316
- Accuracy: 0.3288

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 2.6134        | 1.0   | 924   | 2.5724          | 0.1941   |
| 2.5066        | 2.0   | 1848  | 2.4917          | 0.1947   |
| 2.5572        | 3.0   | 2772  | 2.4417          | 0.1971   |
| 2.3516        | 4.0   | 3696  | 2.4048          | 0.2080   |
| 2.4257        | 5.0   | 4620  | 2.3743          | 0.2332   |
| 2.3129        | 6.0   | 5544  | 2.3404          | 0.2411   |
| 2.2992        | 7.0   | 6468  | 2.3155          | 0.2636   |
| 2.266         | 8.0   | 7392  | 2.2914          | 0.2683   |
| 2.2389        | 9.0   | 8316  | 2.2655          | 0.2778   |
| 2.2861        | 10.0  | 9240  | 2.2421          | 0.2873   |
| 2.2192        | 11.0  | 10164 | 2.2250          | 0.2905   |
| 2.2057        | 12.0  | 11088 | 2.2046          | 0.2984   |
| 2.0519        | 13.0  | 12012 | 2.1880          | 0.3046   |
| 2.1151        | 14.0  | 12936 | 2.1736          | 0.3144   |
| 2.1116        | 15.0  | 13860 | 2.1599          | 0.3204   |
| 2.0726        | 16.0  | 14784 | 2.1517          | 0.3234   |
| 2.1017        | 17.0  | 15708 | 2.1408          | 0.3272   |
| 2.051         | 18.0  | 16632 | 2.1358          | 0.3285   |
| 2.0423        | 19.0  | 17556 | 2.1327          | 0.3296   |
| 2.0517        | 20.0  | 18480 | 2.1316          | 0.3288   |


### Framework versions

- Transformers 4.32.1
- Pytorch 2.1.1+cu121
- Datasets 2.21.0
- Tokenizers 0.13.2