|
|
|
from transformers import LlamaConfig, PretrainedConfig |
|
from transformers.utils import logging |
|
from transformers import Qwen2Config, Qwen2Model, Qwen2ForCausalLM, AutoConfig, AutoModelForCausalLM |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
class InternVisionConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to |
|
instantiate a vision encoder according to the specified arguments, defining the model architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
num_channels (`int`, *optional*, defaults to 3): |
|
Number of color channels in the input images (e.g., 3 for RGB). |
|
patch_size (`int`, *optional*, defaults to 14): |
|
The size (resolution) of each patch. |
|
image_size (`int`, *optional*, defaults to 224): |
|
The size (resolution) of each image. |
|
qkv_bias (`bool`, *optional*, defaults to `False`): |
|
Whether to add a bias to the queries and values in the self-attention layers. |
|
hidden_size (`int`, *optional*, defaults to 3200): |
|
Dimensionality of the encoder layers and the pooler layer. |
|
num_attention_heads (`int`, *optional*, defaults to 25): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
intermediate_size (`int`, *optional*, defaults to 12800): |
|
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. |
|
qk_normalization (`bool`, *optional*, defaults to `True`): |
|
Whether to normalize the queries and keys in the self-attention layers. |
|
num_hidden_layers (`int`, *optional*, defaults to 48): |
|
Number of hidden layers in the Transformer encoder. |
|
use_flash_attn (`bool`, *optional*, defaults to `True`): |
|
Whether to use flash attention mechanism. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): |
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, |
|
`"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported. |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-6): |
|
The epsilon used by the layer normalization layers. |
|
dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. |
|
drop_path_rate (`float`, *optional*, defaults to 0.0): |
|
Dropout rate for stochastic depth. |
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for the attention probabilities. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
initializer_factor (`float`, *optional*, defaults to 0.1): |
|
A factor for layer scale. |
|
""" |
|
|
|
model_type = 'intern_vit_6b' |
|
|
|
def __init__( |
|
self, |
|
num_channels=3, |
|
patch_size=14, |
|
image_size=448, |
|
qkv_bias=False, |
|
hidden_size=3200, |
|
num_attention_heads=25, |
|
intermediate_size=12800, |
|
qk_normalization=True, |
|
num_hidden_layers=45, |
|
use_flash_attn=True, |
|
hidden_act='gelu', |
|
layer_norm_eps=1e-6, |
|
dropout=0.0, |
|
drop_path_rate=0.0, |
|
attention_dropout=0.0, |
|
initializer_range=1e-10, |
|
initializer_factor=0.1, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
|
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.dropout = dropout |
|
self.drop_path_rate = drop_path_rate |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.num_channels = num_channels |
|
self.patch_size = patch_size |
|
self.image_size = image_size |
|
self.initializer_range = initializer_range |
|
self.initializer_factor = initializer_factor |
|
self.attention_dropout = attention_dropout |
|
self.layer_norm_eps = layer_norm_eps |
|
self.hidden_act = hidden_act |
|
self.qkv_bias = qkv_bias |
|
self.qk_normalization = qk_normalization |
|
self.use_flash_attn = use_flash_attn |
|
|
|
|
|
class OmChatConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`OmChatForConditionalGeneration`]. It is used to instantiate an |
|
Llava-NeXT model according to the specified arguments, defining the model architecture. Instantiating a configuration |
|
with the defaults will yield a similar configuration to that of the [llava-hf/llava-v1.6-mistral-7b-hf](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf) |
|
model. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
vision_config (`Union[AutoConfig, dict]`, *optional*, defaults to `CLIPVisionConfig`): |
|
The config object or dictionary of the vision backbone. |
|
text_config (`Union[AutoConfig, dict]`, *optional*, defaults to `LlamaConfig`): |
|
The config object or dictionary of the text backbone. |
|
ignore_index (`int`, *optional*, defaults to -100): |
|
The ignore index for the loss function. |
|
image_token_index (`int`, *optional*, defaults to 32000): |
|
The image token index to encode the image prompt. |
|
projector_hidden_act (`str`, *optional*, defaults to `"gelu"`): |
|
The activation function used by the multimodal projector. |
|
vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`): |
|
The feature selection strategy used to select the vision feature from the vision backbone. |
|
Can be one of `"default"` or `"full"`. If `"default"`, the CLS token is removed from the vision features. |
|
If `"full"`, the full vision features are used. |
|
vision_feature_layer (`int`, *optional*, defaults to -2): |
|
The index of the layer to select the vision feature. |
|
image_grid_pinpoints (`List`, *optional*, defaults to `[[336, 672], [672, 336], [672, 672], [1008, 336], [336, 1008]]`): |
|
A list of possible resolutions to use for processing high resolution images. Each item in the list should be a tuple or list |
|
of the form `(height, width)`. |
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`): |
|
Whether the model's input and output word embeddings should be tied. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import OmChatForConditionalGeneration, OmChatConfig, CLIPVisionConfig, LlamaConfig |
|
|
|
>>> # Initializing a CLIP-vision config |
|
>>> vision_config = CLIPVisionConfig() |
|
|
|
>>> # Initializing a Llama config |
|
>>> text_config = LlamaConfig() |
|
|
|
>>> # Initializing a Llava-Next llava-hf/llava-v1.6-mistral-7b-hf style configuration |
|
>>> configuration = OmChatConfig(vision_config, text_config) |
|
|
|
>>> # Initializing a model from the llava-hf/llava-v1.6-mistral-7b-hf style configuration |
|
>>> model = OmChatForConditionalGeneration(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "omchat" |
|
is_composition = False |
|
|
|
def __init__( |
|
self, |
|
vision_config=None, |
|
text_config=None, |
|
ignore_index=-100, |
|
image_token_index=32000, |
|
projector_hidden_act="gelu", |
|
vision_feature_select_strategy="default", |
|
vision_feature_layer=-1, |
|
image_grid_pinpoints=None, |
|
tie_word_embeddings=False, |
|
**kwargs, |
|
): |
|
self.ignore_index = ignore_index |
|
self.image_token_index = image_token_index |
|
self.projector_hidden_act = projector_hidden_act |
|
|
|
if vision_feature_select_strategy not in ["default", "full"]: |
|
raise ValueError( |
|
"vision_feature_select_strategy should be one of 'default', 'full'." |
|
f"Got: {vision_feature_select_strategy}" |
|
) |
|
|
|
self.vision_feature_select_strategy = vision_feature_select_strategy |
|
self.vision_feature_layer = vision_feature_layer |
|
image_grid_pinpoints = ( |
|
image_grid_pinpoints |
|
if image_grid_pinpoints is not None |
|
else [[336, 672], [672, 336], [672, 672], [1008, 336], [336, 1008]] |
|
) |
|
self.image_grid_pinpoints = image_grid_pinpoints |
|
|
|
if isinstance(vision_config, dict): |
|
|
|
vision_config = InternVisionConfig(**vision_config) |
|
self.vision_config = vision_config |
|
|
|
if isinstance(text_config, dict): |
|
text_config = Qwen2Config(**text_config) |
|
|
|
self.text_config = text_config |
|
|
|
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs) |
|
|