File size: 878 Bytes
0b30e21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eddd574
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
---
license: mit
datasets:
- omarmomen/babylm_10M
language:
- en
metrics:
- perplexity
library_name: transformers
---
# Model Card for omarmomen/structroberta_s2_final

This model is part of the experiments in the published paper at the BabyLM workshop in CoNLL 2023. 
The paper titled "Increasing The Performance of Cognitively Inspired Data-Efficient Language Models via Implicit Structure Building" (https://aclanthology.org/2023.conll-babylm.29/)

<strong>omarmomen/structroberta_s2_final</strong> is a modification on the Roberta Model to incorporate syntactic inductive bias using an unsupervised parsing mechanism.

This model variant places the parser network after 4 attention blocks.

The model is pretrained on the BabyLM 10M dataset using a custom pretrained RobertaTokenizer (https://huggingface.co/omarmomen/babylm_tokenizer_32k).

https://arxiv.org/abs/2310.20589