File size: 84,961 Bytes
3b8ebdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
import copy
import math
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from packaging import version
from torch import nn
import torch.nn.functional as F
from torch.nn import CrossEntropyLoss, MSELoss, BCEWithLogitsLoss
from transformers.activations import ACT2FN, gelu
from transformers.modeling_outputs import (
    BaseModelOutputWithPastAndCrossAttentions,
    BaseModelOutputWithPoolingAndCrossAttentions,
    MaskedLMOutput,
    SequenceClassifierOutput
)
from transformers.modeling_utils import (
    PreTrainedModel,
    apply_chunking_to_forward,
    find_pruneable_heads_and_indices,
    prune_linear_layer,
)
from transformers.utils import logging
from transformers import RobertaConfig


logger = logging.get_logger(__name__)
ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "roberta-base",
    "roberta-large",
    "roberta-large-mnli",
    "distilroberta-base",
    "roberta-base-openai-detector",
    "roberta-large-openai-detector",
    # See all RoBERTa models at https://huggingface.co/models?filter=roberta
]


class StructRobertaConfig(RobertaConfig):
    model_type = "roberta"

    def __init__(
        self,
        n_parser_layers=4,
        conv_size=9,
        relations=("head", "child"),
        weight_act="softmax",
        n_cntxt_layers=3,
        n_cntxt_layers_2=0,
        **kwargs,):
        
        super().__init__(**kwargs)
        self.n_cntxt_layers = n_cntxt_layers
        self.n_parser_layers = n_parser_layers
        self.n_cntxt_layers_2 = n_cntxt_layers_2
        self.conv_size = conv_size
        self.relations = relations
        self.weight_act = weight_act

class Conv1d(nn.Module):
    """1D convolution layer."""

    def __init__(self, hidden_size, kernel_size, dilation=1):
        """Initialization.

        Args:
        hidden_size: dimension of input embeddings
        kernel_size: convolution kernel size
        dilation: the spacing between the kernel points
        """
        super(Conv1d, self).__init__()

        if kernel_size % 2 == 0:
            padding = (kernel_size // 2) * dilation
            self.shift = True
        else:
            padding = ((kernel_size - 1) // 2) * dilation
            self.shift = False
        self.conv = nn.Conv1d(
            hidden_size, hidden_size, kernel_size, padding=padding, dilation=dilation
        )

    def forward(self, x):
        """Compute convolution.

        Args:
          x: input embeddings
        Returns:
          conv_output: convolution results
        """

        if self.shift:
            return self.conv(x.transpose(1, 2)).transpose(1, 2)[:, 1:]
        else:
            return self.conv(x.transpose(1, 2)).transpose(1, 2)


class RobertaEmbeddings(nn.Module):
    """
    Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
    """

    # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__
    def __init__(self, config):
        super().__init__()
        self.word_embeddings = nn.Embedding(
            config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id
        )
        self.position_embeddings = nn.Embedding(
            config.max_position_embeddings, config.hidden_size
        )
        self.token_type_embeddings = nn.Embedding(
            config.type_vocab_size, config.hidden_size
        )

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        # position_ids (1, len position emb) is contiguous in memory and exported when serialized
        self.position_embedding_type = getattr(
            config, "position_embedding_type", "absolute"
        )
        self.register_buffer(
            "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))
        )
        if version.parse(torch.__version__) > version.parse("1.6.0"):
            self.register_buffer(
                "token_type_ids",
                torch.zeros(self.position_ids.size(), dtype=torch.long),
                persistent=False,
            )

        # End copy
        self.padding_idx = config.pad_token_id
        self.position_embeddings = nn.Embedding(
            config.max_position_embeddings,
            config.hidden_size,
            padding_idx=self.padding_idx,
        )

    def forward(
        self,
        input_ids=None,
        token_type_ids=None,
        position_ids=None,
        inputs_embeds=None,
        past_key_values_length=0,
    ):
        if position_ids is None:
            if input_ids is not None:
                # Create the position ids from the input token ids. Any padded tokens remain padded.
                position_ids = create_position_ids_from_input_ids(
                    input_ids, self.padding_idx, past_key_values_length
                )
            else:
                position_ids = self.create_position_ids_from_inputs_embeds(
                    inputs_embeds
                )

        if input_ids is not None:
            input_shape = input_ids.size()
        else:
            input_shape = inputs_embeds.size()[:-1]

        seq_length = input_shape[1]

        # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
        # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
        # issue #5664
        if token_type_ids is None:
            if hasattr(self, "token_type_ids"):
                buffered_token_type_ids = self.token_type_ids[:, :seq_length]
                buffered_token_type_ids_expanded = buffered_token_type_ids.expand(
                    input_shape[0], seq_length
                )
                token_type_ids = buffered_token_type_ids_expanded
            else:
                token_type_ids = torch.zeros(
                    input_shape, dtype=torch.long, device=self.position_ids.device
                )

        if inputs_embeds is None:
            inputs_embeds = self.word_embeddings(input_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)

        embeddings = inputs_embeds + token_type_embeddings
        if self.position_embedding_type == "absolute":
            position_embeddings = self.position_embeddings(position_ids)
            embeddings += position_embeddings
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings

    def create_position_ids_from_inputs_embeds(self, inputs_embeds):
        """
        We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.

        Args:
            inputs_embeds: torch.Tensor

        Returns: torch.Tensor
        """
        input_shape = inputs_embeds.size()[:-1]
        sequence_length = input_shape[1]

        position_ids = torch.arange(
            self.padding_idx + 1,
            sequence_length + self.padding_idx + 1,
            dtype=torch.long,
            device=inputs_embeds.device,
        )
        return position_ids.unsqueeze(0).expand(input_shape)


# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->Roberta
class RobertaSelfAttention(nn.Module):
    def __init__(self, config, position_embedding_type=None):
        super().__init__()
        if config.hidden_size % config.num_attention_heads != 0 and not hasattr(
            config, "embedding_size"
        ):
            raise ValueError(
                f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
                f"heads ({config.num_attention_heads})"
            )

        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
        self.position_embedding_type = position_embedding_type or getattr(
            config, "position_embedding_type", "absolute"
        )
        if (
            self.position_embedding_type == "relative_key"
            or self.position_embedding_type == "relative_key_query"
        ):
            self.max_position_embeddings = config.max_position_embeddings
            self.distance_embedding = nn.Embedding(
                2 * config.max_position_embeddings - 1, self.attention_head_size
            )

        self.is_decoder = config.is_decoder

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (
            self.num_attention_heads,
            self.attention_head_size,
        )
        x = x.view(new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.FloatTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
        past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        output_attentions: Optional[bool] = False,
        parser_att_mask=None,
    ) -> Tuple[torch.Tensor]:
        mixed_query_layer = self.query(hidden_states)

        # If this is instantiated as a cross-attention module, the keys
        # and values come from an encoder; the attention mask needs to be
        # such that the encoder's padding tokens are not attended to.
        is_cross_attention = encoder_hidden_states is not None

        if is_cross_attention and past_key_value is not None:
            # reuse k,v, cross_attentions
            key_layer = past_key_value[0]
            value_layer = past_key_value[1]
            attention_mask = encoder_attention_mask
        elif is_cross_attention:
            key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
            value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
            attention_mask = encoder_attention_mask
        elif past_key_value is not None:
            key_layer = self.transpose_for_scores(self.key(hidden_states))
            value_layer = self.transpose_for_scores(self.value(hidden_states))
            key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
            value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
        else:
            key_layer = self.transpose_for_scores(self.key(hidden_states))
            value_layer = self.transpose_for_scores(self.value(hidden_states))

        query_layer = self.transpose_for_scores(mixed_query_layer)

        if self.is_decoder:
            # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
            # Further calls to cross_attention layer can then reuse all cross-attention
            # key/value_states (first "if" case)
            # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
            # all previous decoder key/value_states. Further calls to uni-directional self-attention
            # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
            # if encoder bi-directional self-attention `past_key_value` is always `None`
            past_key_value = (key_layer, value_layer)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))

        if (
            self.position_embedding_type == "relative_key"
            or self.position_embedding_type == "relative_key_query"
        ):
            seq_length = hidden_states.size()[1]
            position_ids_l = torch.arange(
                seq_length, dtype=torch.long, device=hidden_states.device
            ).view(-1, 1)
            position_ids_r = torch.arange(
                seq_length, dtype=torch.long, device=hidden_states.device
            ).view(1, -1)
            distance = position_ids_l - position_ids_r
            positional_embedding = self.distance_embedding(
                distance + self.max_position_embeddings - 1
            )
            positional_embedding = positional_embedding.to(
                dtype=query_layer.dtype
            )  # fp16 compatibility

            if self.position_embedding_type == "relative_key":
                relative_position_scores = torch.einsum(
                    "bhld,lrd->bhlr", query_layer, positional_embedding
                )
                attention_scores = attention_scores + relative_position_scores
            elif self.position_embedding_type == "relative_key_query":
                relative_position_scores_query = torch.einsum(
                    "bhld,lrd->bhlr", query_layer, positional_embedding
                )
                relative_position_scores_key = torch.einsum(
                    "bhrd,lrd->bhlr", key_layer, positional_embedding
                )
                attention_scores = (
                    attention_scores
                    + relative_position_scores_query
                    + relative_position_scores_key
                )

        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        if attention_mask is not None:
            # Apply the attention mask is (precomputed for all layers in RobertaModel forward() function)
            attention_scores = attention_scores + attention_mask

        if parser_att_mask is None:
            # Normalize the attention scores to probabilities.
            attention_probs = nn.functional.softmax(attention_scores, dim=-1)
        else:
            attention_probs = torch.sigmoid(attention_scores) * parser_att_mask

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

        context_layer = torch.matmul(attention_probs, value_layer)

        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(new_context_layer_shape)

        outputs = (
            (context_layer, attention_probs) if output_attentions else (context_layer,)
        )

        if self.is_decoder:
            outputs = outputs + (past_key_value,)
        return outputs


# Copied from transformers.models.bert.modeling_bert.BertSelfOutput
class RobertaSelfOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(
        self, hidden_states: torch.Tensor, input_tensor: torch.Tensor
    ) -> torch.Tensor:
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->Roberta
class RobertaAttention(nn.Module):
    def __init__(self, config, position_embedding_type=None):
        super().__init__()
        self.self = RobertaSelfAttention(
            config, position_embedding_type=position_embedding_type
        )
        self.output = RobertaSelfOutput(config)
        self.pruned_heads = set()

    def prune_heads(self, heads):
        if len(heads) == 0:
            return
        heads, index = find_pruneable_heads_and_indices(
            heads,
            self.self.num_attention_heads,
            self.self.attention_head_size,
            self.pruned_heads,
        )

        # Prune linear layers
        self.self.query = prune_linear_layer(self.self.query, index)
        self.self.key = prune_linear_layer(self.self.key, index)
        self.self.value = prune_linear_layer(self.self.value, index)
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)

        # Update hyper params and store pruned heads
        self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
        self.self.all_head_size = (
            self.self.attention_head_size * self.self.num_attention_heads
        )
        self.pruned_heads = self.pruned_heads.union(heads)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.FloatTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
        past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        output_attentions: Optional[bool] = False,
        parser_att_mask=None,
    ) -> Tuple[torch.Tensor]:
        self_outputs = self.self(
            hidden_states,
            attention_mask,
            head_mask,
            encoder_hidden_states,
            encoder_attention_mask,
            past_key_value,
            output_attentions,
            parser_att_mask=parser_att_mask,
        )
        attention_output = self.output(self_outputs[0], hidden_states)
        outputs = (attention_output,) + self_outputs[
            1:
        ]  # add attentions if we output them
        return outputs


# Copied from transformers.models.bert.modeling_bert.BertIntermediate
class RobertaIntermediate(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
        if isinstance(config.hidden_act, str):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


# Copied from transformers.models.bert.modeling_bert.BertOutput
class RobertaOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(
        self, hidden_states: torch.Tensor, input_tensor: torch.Tensor
    ) -> torch.Tensor:
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->Roberta
class RobertaLayer(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.chunk_size_feed_forward = config.chunk_size_feed_forward
        self.seq_len_dim = 1
        self.attention = RobertaAttention(config)
        self.is_decoder = config.is_decoder
        self.add_cross_attention = config.add_cross_attention
        if self.add_cross_attention:
            if not self.is_decoder:
                raise ValueError(
                    f"{self} should be used as a decoder model if cross attention is added"
                )
            self.crossattention = RobertaAttention(
                config, position_embedding_type="absolute"
            )
        self.intermediate = RobertaIntermediate(config)
        self.output = RobertaOutput(config)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.FloatTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
        past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        output_attentions: Optional[bool] = False,
        parser_att_mask=None,
    ) -> Tuple[torch.Tensor]:
        # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
        self_attn_past_key_value = (
            past_key_value[:2] if past_key_value is not None else None
        )
        self_attention_outputs = self.attention(
            hidden_states,
            attention_mask,
            head_mask,
            output_attentions=output_attentions,
            past_key_value=self_attn_past_key_value,
            parser_att_mask=parser_att_mask,
        )
        attention_output = self_attention_outputs[0]

        # if decoder, the last output is tuple of self-attn cache
        if self.is_decoder:
            outputs = self_attention_outputs[1:-1]
            present_key_value = self_attention_outputs[-1]
        else:
            outputs = self_attention_outputs[
                1:
            ]  # add self attentions if we output attention weights

        cross_attn_present_key_value = None
        if self.is_decoder and encoder_hidden_states is not None:
            if not hasattr(self, "crossattention"):
                raise ValueError(
                    f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`"
                )

            # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
            cross_attn_past_key_value = (
                past_key_value[-2:] if past_key_value is not None else None
            )
            cross_attention_outputs = self.crossattention(
                attention_output,
                attention_mask,
                head_mask,
                encoder_hidden_states,
                encoder_attention_mask,
                cross_attn_past_key_value,
                output_attentions,
            )
            attention_output = cross_attention_outputs[0]
            outputs = (
                outputs + cross_attention_outputs[1:-1]
            )  # add cross attentions if we output attention weights

            # add cross-attn cache to positions 3,4 of present_key_value tuple
            cross_attn_present_key_value = cross_attention_outputs[-1]
            present_key_value = present_key_value + cross_attn_present_key_value

        layer_output = apply_chunking_to_forward(
            self.feed_forward_chunk,
            self.chunk_size_feed_forward,
            self.seq_len_dim,
            attention_output,
        )
        outputs = (layer_output,) + outputs

        # if decoder, return the attn key/values as the last output
        if self.is_decoder:
            outputs = outputs + (present_key_value,)

        return outputs

    def feed_forward_chunk(self, attention_output):
        intermediate_output = self.intermediate(attention_output)
        layer_output = self.output(intermediate_output, attention_output)
        return layer_output


# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->Roberta
class RobertaEncoder(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.layer = nn.ModuleList(
            [RobertaLayer(config) for _ in range(config.num_hidden_layers)]
        )
        self.gradient_checkpointing = False

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.FloatTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = False,
        output_hidden_states: Optional[bool] = False,
        return_dict: Optional[bool] = True,
        parser_att_mask=None,
    ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
        all_hidden_states = () if output_hidden_states else None
        all_self_attentions = () if output_attentions else None
        all_cross_attentions = (
            () if output_attentions and self.config.add_cross_attention else None
        )

        next_decoder_cache = () if use_cache else None
        for i, layer_module in enumerate(self.layer):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            layer_head_mask = head_mask[i] if head_mask is not None else None
            past_key_value = past_key_values[i] if past_key_values is not None else None

            if self.gradient_checkpointing and self.training:

                if use_cache:
                    logger.warning(
                        "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                    )
                    use_cache = False

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs, past_key_value, output_attentions)

                    return custom_forward

                layer_outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(layer_module),
                    hidden_states,
                    attention_mask,
                    layer_head_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
                )
            else:
                if parser_att_mask is not None:
                    layer_outputs = layer_module(
                        hidden_states,
                        attention_mask,
                        layer_head_mask,
                        encoder_hidden_states,
                        encoder_attention_mask,
                        past_key_value,
                        output_attentions,
                        parser_att_mask=parser_att_mask[i])
                else:
                    layer_outputs = layer_module(
                        hidden_states,
                        attention_mask,
                        layer_head_mask,
                        encoder_hidden_states,
                        encoder_attention_mask,
                        past_key_value,
                        output_attentions,
                        parser_att_mask=None)
                    

            hidden_states = layer_outputs[0]
            if use_cache:
                next_decoder_cache += (layer_outputs[-1],)
            if output_attentions:
                all_self_attentions = all_self_attentions + (layer_outputs[1],)
                if self.config.add_cross_attention:
                    all_cross_attentions = all_cross_attentions + (layer_outputs[2],)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(
                v
                for v in [
                    hidden_states,
                    next_decoder_cache,
                    all_hidden_states,
                    all_self_attentions,
                    all_cross_attentions,
                ]
                if v is not None
            )
        return BaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=hidden_states,
            past_key_values=next_decoder_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
            cross_attentions=all_cross_attentions,
        )


# Copied from transformers.models.bert.modeling_bert.BertPooler
class RobertaPooler(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


class RobertaPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = RobertaConfig
    base_model_prefix = "roberta"
    supports_gradient_checkpointing = True

    # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
    def _init_weights(self, module):
        """Initialize the weights"""
        if isinstance(module, nn.Linear):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            if module.bias is not None:
                module.bias.data.zero_()
                module.weight.data.fill_(1.0)

    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, RobertaEncoder):
            module.gradient_checkpointing = value

    def update_keys_to_ignore(self, config, del_keys_to_ignore):
        """Remove some keys from ignore list"""
        if not config.tie_word_embeddings:
            # must make a new list, or the class variable gets modified!
            self._keys_to_ignore_on_save = [
                k for k in self._keys_to_ignore_on_save if k not in del_keys_to_ignore
            ]
            self._keys_to_ignore_on_load_missing = [
                k
                for k in self._keys_to_ignore_on_load_missing
                if k not in del_keys_to_ignore
            ]


ROBERTA_START_DOCSTRING = r"""

    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`RobertaConfig`]): Model configuration class with all the parameters of the
            model. Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""


ROBERTA_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `({0})`):
            Indices of input sequence tokens in the vocabulary.

            Indices can be obtained using [`RobertaTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)
        token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
            Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
            1]`:

            - 0 corresponds to a *sentence A* token,
            - 1 corresponds to a *sentence B* token.

            [What are token type IDs?](../glossary#token-type-ids)
        position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
            config.max_position_embeddings - 1]`.

            [What are position IDs?](../glossary#position-ids)
        head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
            Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
            model's internal embedding lookup matrix.
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""


class RobertaModel(RobertaPreTrainedModel):
    """

    The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
    cross-attention is added between the self-attention layers, following the architecture described in *Attention is
    all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
    Kaiser and Illia Polosukhin.

    To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
    to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
    `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.

    .. _*Attention is all you need*: https://arxiv.org/abs/1706.03762

    """

    _keys_to_ignore_on_load_missing = [r"position_ids"]

    # Copied from transformers.models.bert.modeling_bert.BertModel.__init__ with Bert->Roberta
    def __init__(self, config, add_pooling_layer=True):
        super().__init__(config)
        self.config = config

        self.embeddings = RobertaEmbeddings(config)
        self.encoder = RobertaEncoder(config)

        self.pooler = RobertaPooler(config) if add_pooling_layer else None

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.embeddings.word_embeddings

    def set_input_embeddings(self, value):
        self.embeddings.word_embeddings = value

    def _prune_heads(self, heads_to_prune):
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

    # Copied from transformers.models.bert.modeling_bert.BertModel.forward
    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        token_type_ids: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        parser_att_mask=None,
    ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
        r"""
        encoder_hidden_states  (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
            the model is configured as a decoder.
        encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
            the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.
        past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
            Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.

            If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
            don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
            `decoder_input_ids` of shape `(batch_size, sequence_length)`.
        use_cache (`bool`, *optional*):
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).
        """
        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        if self.config.is_decoder:
            use_cache = use_cache if use_cache is not None else self.config.use_cache
        else:
            use_cache = False

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError(
                "You cannot specify both input_ids and inputs_embeds at the same time"
            )
        elif input_ids is not None:
            input_shape = input_ids.size()
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        batch_size, seq_length = input_shape
        device = input_ids.device if input_ids is not None else inputs_embeds.device

        # past_key_values_length
        past_key_values_length = (
            past_key_values[0][0].shape[2] if past_key_values is not None else 0
        )

        if attention_mask is None:
            attention_mask = torch.ones(
                ((batch_size, seq_length + past_key_values_length)), device=device
            )

        if token_type_ids is None:
            if hasattr(self.embeddings, "token_type_ids"):
                buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
                buffered_token_type_ids_expanded = buffered_token_type_ids.expand(
                    batch_size, seq_length
                )
                token_type_ids = buffered_token_type_ids_expanded
            else:
                token_type_ids = torch.zeros(
                    input_shape, dtype=torch.long, device=device
                )

        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(
            attention_mask, input_shape, device
        )

        # If a 2D or 3D attention mask is provided for the cross-attention
        # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
        if self.config.is_decoder and encoder_hidden_states is not None:
            (
                encoder_batch_size,
                encoder_sequence_length,
                _,
            ) = encoder_hidden_states.size()
            encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
            if encoder_attention_mask is None:
                encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
            encoder_extended_attention_mask = self.invert_attention_mask(
                encoder_attention_mask
            )
        else:
            encoder_extended_attention_mask = None

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
        head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)

        embedding_output = self.embeddings(
            input_ids=input_ids,
            position_ids=position_ids,
            token_type_ids=token_type_ids,
            inputs_embeds=inputs_embeds,
            past_key_values_length=past_key_values_length,
        )
        encoder_outputs = self.encoder(
            embedding_output,
            attention_mask=extended_attention_mask,
            head_mask=head_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_extended_attention_mask,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            parser_att_mask=parser_att_mask,
        )
        sequence_output = encoder_outputs[0]
        pooled_output = (
            self.pooler(sequence_output) if self.pooler is not None else None
        )

        if not return_dict:
            return (sequence_output, pooled_output) + encoder_outputs[1:]

        return BaseModelOutputWithPoolingAndCrossAttentions(
            last_hidden_state=sequence_output,
            pooler_output=pooled_output,
            past_key_values=encoder_outputs.past_key_values,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
            cross_attentions=encoder_outputs.cross_attentions,
        )


class StructRoberta(RobertaPreTrainedModel):
    _keys_to_ignore_on_save = [r"lm_head.decoder.weight", r"lm_head.decoder.bias"]
    _keys_to_ignore_on_load_missing = [
        r"position_ids",
        r"lm_head.decoder.weight",
        r"lm_head.decoder.bias",
    ]
    _keys_to_ignore_on_load_unexpected = [r"pooler"]

    def __init__(self, config):
        super().__init__(config)

        if config.is_decoder:
            logger.warning(
                "If you want to use `RobertaForMaskedLM` make sure `config.is_decoder=False` for "
                "bi-directional self-attention."
            )

        
        if config.n_cntxt_layers > 0:
            config_cntxt = copy.deepcopy(config)
            config_cntxt.num_hidden_layers = config.n_cntxt_layers
            
            self.cntxt_layers = RobertaModel(config_cntxt, add_pooling_layer=False)
        
        if config.n_cntxt_layers_2 > 0:
            self.parser_layers_1 = nn.ModuleList(
                [
                    nn.Sequential(
                        Conv1d(config.hidden_size, config.conv_size),
                        nn.LayerNorm(config.hidden_size, elementwise_affine=False),
                        nn.Tanh(),
                    )
                    for i in range(int(config.n_parser_layers/2))
                ]
            )

            self.distance_ff_1 = nn.Sequential(
                Conv1d(config.hidden_size, 2),
                nn.LayerNorm(config.hidden_size, elementwise_affine=False),
                nn.Tanh(),
                nn.Linear(config.hidden_size, 1),
            )

            self.height_ff_1 = nn.Sequential(
                nn.Linear(config.hidden_size, config.hidden_size),
                nn.LayerNorm(config.hidden_size, elementwise_affine=False),
                nn.Tanh(),
                nn.Linear(config.hidden_size, 1),
            )

            n_rel = len(config.relations)
            self._rel_weight_1 = nn.Parameter(
                torch.zeros((config.n_cntxt_layers_2, config.num_attention_heads, n_rel))
            )
            self._rel_weight_1.data.normal_(0, 0.1)

            self._scaler_1 = nn.Parameter(torch.zeros(2))
            
            config_cntxt_2 = copy.deepcopy(config)
            config_cntxt_2.num_hidden_layers = config.n_cntxt_layers_2
            
            self.cntxt_layers_2 = RobertaModel(config_cntxt_2, add_pooling_layer=False)
            
            
            self.parser_layers_2 = nn.ModuleList(
                [
                    nn.Sequential(
                        Conv1d(config.hidden_size, config.conv_size),
                        nn.LayerNorm(config.hidden_size, elementwise_affine=False),
                        nn.Tanh(),
                    )
                    for i in range(int(config.n_parser_layers/2))
                ]
            )

            self.distance_ff_2 = nn.Sequential(
                Conv1d(config.hidden_size, 2),
                nn.LayerNorm(config.hidden_size, elementwise_affine=False),
                nn.Tanh(),
                nn.Linear(config.hidden_size, 1),
            )

            self.height_ff_2 = nn.Sequential(
                nn.Linear(config.hidden_size, config.hidden_size),
                nn.LayerNorm(config.hidden_size, elementwise_affine=False),
                nn.Tanh(),
                nn.Linear(config.hidden_size, 1),
            )

            n_rel = len(config.relations)
            self._rel_weight_2 = nn.Parameter(
                torch.zeros((config.num_hidden_layers, config.num_attention_heads, n_rel))
            )
            self._rel_weight_2.data.normal_(0, 0.1)

            self._scaler_2 = nn.Parameter(torch.zeros(2))
            
        else:
            self.parser_layers = nn.ModuleList(
                [
                    nn.Sequential(
                        Conv1d(config.hidden_size, config.conv_size),
                        nn.LayerNorm(config.hidden_size, elementwise_affine=False),
                        nn.Tanh(),
                    )
                    for i in range(config.n_parser_layers)
                ]
            )

            self.distance_ff = nn.Sequential(
                Conv1d(config.hidden_size, 2),
                nn.LayerNorm(config.hidden_size, elementwise_affine=False),
                nn.Tanh(),
                nn.Linear(config.hidden_size, 1),
            )

            self.height_ff = nn.Sequential(
                nn.Linear(config.hidden_size, config.hidden_size),
                nn.LayerNorm(config.hidden_size, elementwise_affine=False),
                nn.Tanh(),
                nn.Linear(config.hidden_size, 1),
            )

            n_rel = len(config.relations)
            self._rel_weight = nn.Parameter(
                torch.zeros((config.num_hidden_layers, config.num_attention_heads, n_rel))
            )
            self._rel_weight.data.normal_(0, 0.1)

            self._scaler = nn.Parameter(torch.zeros(2))

        self.roberta = RobertaModel(config, add_pooling_layer=False)
        
        if config.n_cntxt_layers > 0:
            self.cntxt_layers.embeddings = self.roberta.embeddings
        if config.n_cntxt_layers_2 > 0:
            self.cntxt_layers_2.embeddings = self.roberta.embeddings
        
        self.lm_head = RobertaLMHead(config)

        self.pad = config.pad_token_id

        # The LM head weights require special treatment only when they are tied with the word embeddings
        self.update_keys_to_ignore(config, ["lm_head.decoder.weight"])

        # Initialize weights and apply final processing
        self.post_init()

    def get_output_embeddings(self):
        return self.lm_head.decoder

    def set_output_embeddings(self, new_embeddings):
        self.lm_head.decoder = new_embeddings

    @property
    def scaler(self):
        return self._scaler.exp()
    
    @property
    def scaler_1(self):
        return self._scaler_1.exp()
    
    @property
    def scaler_2(self):
        return self._scaler_2.exp()

    @property
    def rel_weight(self):
        if self.config.weight_act == "sigmoid":
            return torch.sigmoid(self._rel_weight)
        elif self.config.weight_act == "softmax":
            return torch.softmax(self._rel_weight, dim=-1)
        
    @property
    def rel_weight_1(self):
        if self.config.weight_act == "sigmoid":
            return torch.sigmoid(self._rel_weight_1)
        elif self.config.weight_act == "softmax":
            return torch.softmax(self._rel_weight_1, dim=-1)

    
    @property
    def rel_weight_2(self):
        if self.config.weight_act == "sigmoid":
            return torch.sigmoid(self._rel_weight_2)
        elif self.config.weight_act == "softmax":
            return torch.softmax(self._rel_weight_2, dim=-1)


    def compute_block(self, distance, height, n_cntxt_layers=0):
        """Compute constituents from distance and height."""

        if n_cntxt_layers>0:
            if n_cntxt_layers == 1:
              beta_logits = (distance[:, None, :] - height[:, :, None]) * self.scaler_1[0]
            elif n_cntxt_layers == 2:
              beta_logits = (distance[:, None, :] - height[:, :, None]) * self.scaler_2[0]
        else:
            beta_logits = (distance[:, None, :] - height[:, :, None]) * self.scaler[0]

        gamma = torch.sigmoid(-beta_logits)
        ones = torch.ones_like(gamma)

        block_mask_left = cummin(
            gamma.tril(-1) + ones.triu(0), reverse=True, max_value=1
        )
        block_mask_left = block_mask_left - F.pad(
            block_mask_left[:, :, :-1], (1, 0), value=0
        )
        block_mask_left.tril_(0)

        block_mask_right = cummin(
            gamma.triu(0) + ones.tril(-1), exclusive=True, max_value=1
        )
        block_mask_right = block_mask_right - F.pad(
            block_mask_right[:, :, 1:], (0, 1), value=0
        )
        block_mask_right.triu_(0)

        block_p = block_mask_left[:, :, :, None] * block_mask_right[:, :, None, :]
        block = cumsum(block_mask_left).tril(0) + cumsum(
            block_mask_right, reverse=True
        ).triu(1)

        return block_p, block

    def compute_head(self, height, n_cntxt_layers=0):
        """Estimate head for each constituent."""

        _, length = height.size()
        if n_cntxt_layers>0:
          if n_cntxt_layers == 1:
              head_logits = height * self.scaler_1[1]
          elif n_cntxt_layers == 2:
              head_logits = height * self.scaler_2[1]  
        else:
            head_logits = height * self.scaler[1]
        index = torch.arange(length, device=height.device)

        mask = (index[:, None, None] <= index[None, None, :]) * (
            index[None, None, :] <= index[None, :, None]
        )
        head_logits = head_logits[:, None, None, :].repeat(1, length, length, 1)
        head_logits.masked_fill_(~mask[None, :, :, :], -1e9)

        head_p = torch.softmax(head_logits, dim=-1)

        return head_p

    def parse(self, x, embs=None, n_cntxt_layers=0):
        """Parse input sentence.

        Args:
        x: input tokens (required).
        pos: position for each token (optional).
        Returns:
        distance: syntactic distance
        height: syntactic height
        """

        mask = x != self.pad
        mask_shifted = F.pad(mask[:, 1:], (0, 1), value=0)

        if embs is None:
            h = self.roberta.embeddings(x)
        else:
            h = embs
        
        if n_cntxt_layers > 0:
            if n_cntxt_layers == 1:
                parser_layers = self.parser_layers_1
                height_ff = self.height_ff_1
                distance_ff = self.distance_ff_1
            elif n_cntxt_layers == 2:
                parser_layers = self.parser_layers_2
                height_ff = self.height_ff_2
                distance_ff = self.distance_ff_2
            for i in range(int(self.config.n_parser_layers/2)):
                h = h.masked_fill(~mask[:, :, None], 0)
                h = parser_layers[i](h)

            height = height_ff(h).squeeze(-1)
            height.masked_fill_(~mask, -1e9)

            distance = distance_ff(h).squeeze(-1)
            distance.masked_fill_(~mask_shifted, 1e9)

            # Calbrating the distance and height to the same level
            length = distance.size(1)
            height_max = height[:, None, :].expand(-1, length, -1)
            height_max = torch.cummax(
                height_max.triu(0) - torch.ones_like(height_max).tril(-1) * 1e9, dim=-1
            )[0].triu(0)

            margin_left = torch.relu(
                F.pad(distance[:, :-1, None], (0, 0, 1, 0), value=1e9) - height_max
            )
            margin_right = torch.relu(distance[:, None, :] - height_max)
            margin = torch.where(
                margin_left > margin_right, margin_right, margin_left
            ).triu(0)

            margin_mask = torch.stack([mask_shifted] + [mask] * (length - 1), dim=1)
            margin.masked_fill_(~margin_mask, 0)
            margin = margin.max()

            distance = distance - margin
        else:
            for i in range(self.config.n_parser_layers):
                h = h.masked_fill(~mask[:, :, None], 0)
                h = self.parser_layers[i](h)

            height = self.height_ff(h).squeeze(-1)
            height.masked_fill_(~mask, -1e9)

            distance = self.distance_ff(h).squeeze(-1)
            distance.masked_fill_(~mask_shifted, 1e9)

            # Calbrating the distance and height to the same level
            length = distance.size(1)
            height_max = height[:, None, :].expand(-1, length, -1)
            height_max = torch.cummax(
                height_max.triu(0) - torch.ones_like(height_max).tril(-1) * 1e9, dim=-1
            )[0].triu(0)

            margin_left = torch.relu(
                F.pad(distance[:, :-1, None], (0, 0, 1, 0), value=1e9) - height_max
            )
            margin_right = torch.relu(distance[:, None, :] - height_max)
            margin = torch.where(
                margin_left > margin_right, margin_right, margin_left
            ).triu(0)

            margin_mask = torch.stack([mask_shifted] + [mask] * (length - 1), dim=1)
            margin.masked_fill_(~margin_mask, 0)
            margin = margin.max()

            distance = distance - margin

        return distance, height

    def generate_mask(self, x, distance, height, n_cntxt_layers=0):
        """Compute head and cibling distribution for each token."""

        bsz, length = x.size()

        eye = torch.eye(length, device=x.device, dtype=torch.bool)
        eye = eye[None, :, :].expand((bsz, -1, -1))

        block_p, block = self.compute_block(distance, height, n_cntxt_layers=n_cntxt_layers)
        head_p = self.compute_head(height, n_cntxt_layers=n_cntxt_layers)
        head = torch.einsum("blij,bijh->blh", block_p, head_p)
        head = head.masked_fill(eye, 0)
        child = head.transpose(1, 2)
        cibling = torch.bmm(head, child).masked_fill(eye, 0)

        rel_list = []
        if "head" in self.config.relations:
            rel_list.append(head)
        if "child" in self.config.relations:
            rel_list.append(child)
        if "cibling" in self.config.relations:
            rel_list.append(cibling)

        rel = torch.stack(rel_list, dim=1)

        if n_cntxt_layers > 0:
            if n_cntxt_layers == 1:
                rel_weight = self.rel_weight_1
            elif n_cntxt_layers == 2:
                rel_weight = self.rel_weight_2
        else:
            rel_weight = self.rel_weight

        dep = torch.einsum("lhr,brij->lbhij", rel_weight, rel)
        
        if n_cntxt_layers == 1:
            num_layers = self.cntxt_layers_2.config.num_hidden_layers
        else:
            num_layers = self.roberta.config.num_hidden_layers
            
        att_mask = dep.reshape(
            num_layers,
            bsz,
            self.config.num_attention_heads,
            length,
            length,
        )

        return att_mask, cibling, head, block

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, MaskedLMOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
            config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
            loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
        kwargs (`Dict[str, any]`, optional, defaults to *{}*):
            Used to hide legacy arguments that have been deprecated.
        """
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        
        if self.config.n_cntxt_layers > 0:
            cntxt_outputs = self.cntxt_layers(
                input_ids,
                attention_mask=attention_mask,
                token_type_ids=token_type_ids,
                position_ids=position_ids,
                head_mask=head_mask,
                inputs_embeds=inputs_embeds,
                encoder_hidden_states=encoder_hidden_states,
                encoder_attention_mask=encoder_attention_mask,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict)
            
        
        if self.config.n_cntxt_layers_2 > 0:
            distance_1, height_1 = self.parse(input_ids, cntxt_outputs[0], n_cntxt_layers=1)
            att_mask_1, _, _, _ = self.generate_mask(input_ids, distance_1, height_1, n_cntxt_layers=1)
            
            cntxt_outputs_2 = self.cntxt_layers_2(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            parser_att_mask=att_mask_1)
            
            sequence_output = cntxt_outputs_2[0]
            
            distance_2, height_2 = self.parse(input_ids, sequence_output[0], n_cntxt_layers=2)
            att_mask, _, _, _ = self.generate_mask(input_ids, distance_2, height_2, n_cntxt_layers=2)

        elif self.config.n_cntxt_layers > 0:
            distance, height = self.parse(input_ids, cntxt_outputs[0])
            att_mask, _, _, _ = self.generate_mask(input_ids, distance, height)
        else:
            distance, height = self.parse(input_ids)
            att_mask, _, _, _ = self.generate_mask(input_ids, distance, height)

        outputs = self.roberta(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            parser_att_mask=att_mask,
        )
        sequence_output = outputs[0]
        prediction_scores = self.lm_head(sequence_output)

        masked_lm_loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            masked_lm_loss = loss_fct(
                prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)
            )

        if not return_dict:
            output = (prediction_scores,) + outputs[2:]
            return (
                ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
            )

        return MaskedLMOutput(
            loss=masked_lm_loss,
            logits=prediction_scores,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


class RobertaLMHead(nn.Module):
    """Roberta Head for masked language modeling."""

    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

        self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
        self.bias = nn.Parameter(torch.zeros(config.vocab_size))
        self.decoder.bias = self.bias

    def forward(self, features, **kwargs):
        x = self.dense(features)
        x = gelu(x)
        x = self.layer_norm(x)

        # project back to size of vocabulary with bias
        x = self.decoder(x)

        return x

    def _tie_weights(self):
        # To tie those two weights if they get disconnected (on TPU or when the bias is resized)
        self.bias = self.decoder.bias


class StructRobertaForSequenceClassification(RobertaPreTrainedModel):
    _keys_to_ignore_on_load_missing = [r"position_ids"]

    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.config = config

        if config.n_cntxt_layers > 0:
            config_cntxt = copy.deepcopy(config)
            config_cntxt.num_hidden_layers = config.n_cntxt_layers
            
            self.cntxt_layers = RobertaModel(config_cntxt, add_pooling_layer=False)
        
        if config.n_cntxt_layers_2 > 0:
            self.parser_layers_1 = nn.ModuleList(
                [
                    nn.Sequential(
                        Conv1d(config.hidden_size, config.conv_size),
                        nn.LayerNorm(config.hidden_size, elementwise_affine=False),
                        nn.Tanh(),
                    )
                    for i in range(int(config.n_parser_layers/2))
                ]
            )

            self.distance_ff_1 = nn.Sequential(
                Conv1d(config.hidden_size, 2),
                nn.LayerNorm(config.hidden_size, elementwise_affine=False),
                nn.Tanh(),
                nn.Linear(config.hidden_size, 1),
            )

            self.height_ff_1 = nn.Sequential(
                nn.Linear(config.hidden_size, config.hidden_size),
                nn.LayerNorm(config.hidden_size, elementwise_affine=False),
                nn.Tanh(),
                nn.Linear(config.hidden_size, 1),
            )

            n_rel = len(config.relations)
            self._rel_weight_1 = nn.Parameter(
                torch.zeros((config.n_cntxt_layers_2, config.num_attention_heads, n_rel))
            )
            self._rel_weight_1.data.normal_(0, 0.1)

            self._scaler_1 = nn.Parameter(torch.zeros(2))
            
            config_cntxt_2 = copy.deepcopy(config)
            config_cntxt_2.num_hidden_layers = config.n_cntxt_layers_2
            
            self.cntxt_layers_2 = RobertaModel(config_cntxt_2, add_pooling_layer=False)
            
            
            self.parser_layers_2 = nn.ModuleList(
                [
                    nn.Sequential(
                        Conv1d(config.hidden_size, config.conv_size),
                        nn.LayerNorm(config.hidden_size, elementwise_affine=False),
                        nn.Tanh(),
                    )
                    for i in range(int(config.n_parser_layers/2))
                ]
            )

            self.distance_ff_2 = nn.Sequential(
                Conv1d(config.hidden_size, 2),
                nn.LayerNorm(config.hidden_size, elementwise_affine=False),
                nn.Tanh(),
                nn.Linear(config.hidden_size, 1),
            )

            self.height_ff_2 = nn.Sequential(
                nn.Linear(config.hidden_size, config.hidden_size),
                nn.LayerNorm(config.hidden_size, elementwise_affine=False),
                nn.Tanh(),
                nn.Linear(config.hidden_size, 1),
            )

            n_rel = len(config.relations)
            self._rel_weight_2 = nn.Parameter(
                torch.zeros((config.num_hidden_layers, config.num_attention_heads, n_rel))
            )
            self._rel_weight_2.data.normal_(0, 0.1)

            self._scaler_2 = nn.Parameter(torch.zeros(2))
            
        else:
            self.parser_layers = nn.ModuleList(
                [
                    nn.Sequential(
                        Conv1d(config.hidden_size, config.conv_size),
                        nn.LayerNorm(config.hidden_size, elementwise_affine=False),
                        nn.Tanh(),
                    )
                    for i in range(config.n_parser_layers)
                ]
            )

            self.distance_ff = nn.Sequential(
                Conv1d(config.hidden_size, 2),
                nn.LayerNorm(config.hidden_size, elementwise_affine=False),
                nn.Tanh(),
                nn.Linear(config.hidden_size, 1),
            )

            self.height_ff = nn.Sequential(
                nn.Linear(config.hidden_size, config.hidden_size),
                nn.LayerNorm(config.hidden_size, elementwise_affine=False),
                nn.Tanh(),
                nn.Linear(config.hidden_size, 1),
            )

            n_rel = len(config.relations)
            self._rel_weight = nn.Parameter(
                torch.zeros((config.num_hidden_layers, config.num_attention_heads, n_rel))
            )
            self._rel_weight.data.normal_(0, 0.1)

            self._scaler = nn.Parameter(torch.zeros(2))

        self.roberta = RobertaModel(config, add_pooling_layer=False)
        
        if config.n_cntxt_layers > 0:
            self.cntxt_layers.embeddings = self.roberta.embeddings
        if config.n_cntxt_layers_2 > 0:
            self.cntxt_layers_2.embeddings = self.roberta.embeddings
        
        
        self.pad = config.pad_token_id
        self.classifier = RobertaClassificationHead(config)

        # Initialize weights and apply final processing
        self.post_init()

    
    @property
    def scaler(self):
        return self._scaler.exp()
    
    @property
    def scaler_1(self):
        return self._scaler_1.exp()
    
    @property
    def scaler_2(self):
        return self._scaler_2.exp()

    @property
    def rel_weight(self):
        if self.config.weight_act == "sigmoid":
            return torch.sigmoid(self._rel_weight)
        elif self.config.weight_act == "softmax":
            return torch.softmax(self._rel_weight, dim=-1)
        
    @property
    def rel_weight_1(self):
        if self.config.weight_act == "sigmoid":
            return torch.sigmoid(self._rel_weight_1)
        elif self.config.weight_act == "softmax":
            return torch.softmax(self._rel_weight_1, dim=-1)

    
    @property
    def rel_weight_2(self):
        if self.config.weight_act == "sigmoid":
            return torch.sigmoid(self._rel_weight_2)
        elif self.config.weight_act == "softmax":
            return torch.softmax(self._rel_weight_2, dim=-1)


    def compute_block(self, distance, height, n_cntxt_layers=0):
        """Compute constituents from distance and height."""

        if n_cntxt_layers>0:
            if n_cntxt_layers == 1:
              beta_logits = (distance[:, None, :] - height[:, :, None]) * self.scaler_1[0]
            elif n_cntxt_layers == 2:
              beta_logits = (distance[:, None, :] - height[:, :, None]) * self.scaler_2[0]
        else:
            beta_logits = (distance[:, None, :] - height[:, :, None]) * self.scaler[0]

        gamma = torch.sigmoid(-beta_logits)
        ones = torch.ones_like(gamma)

        block_mask_left = cummin(
            gamma.tril(-1) + ones.triu(0), reverse=True, max_value=1
        )
        block_mask_left = block_mask_left - F.pad(
            block_mask_left[:, :, :-1], (1, 0), value=0
        )
        block_mask_left.tril_(0)

        block_mask_right = cummin(
            gamma.triu(0) + ones.tril(-1), exclusive=True, max_value=1
        )
        block_mask_right = block_mask_right - F.pad(
            block_mask_right[:, :, 1:], (0, 1), value=0
        )
        block_mask_right.triu_(0)

        block_p = block_mask_left[:, :, :, None] * block_mask_right[:, :, None, :]
        block = cumsum(block_mask_left).tril(0) + cumsum(
            block_mask_right, reverse=True
        ).triu(1)

        return block_p, block

    def compute_head(self, height, n_cntxt_layers=0):
        """Estimate head for each constituent."""

        _, length = height.size()
        if n_cntxt_layers>0:
          if n_cntxt_layers == 1:
              head_logits = height * self.scaler_1[1]
          elif n_cntxt_layers == 2:
              head_logits = height * self.scaler_2[1]  
        else:
            head_logits = height * self.scaler[1]
        index = torch.arange(length, device=height.device)

        mask = (index[:, None, None] <= index[None, None, :]) * (
            index[None, None, :] <= index[None, :, None]
        )
        head_logits = head_logits[:, None, None, :].repeat(1, length, length, 1)
        head_logits.masked_fill_(~mask[None, :, :, :], -1e9)

        head_p = torch.softmax(head_logits, dim=-1)

        return head_p

    def parse(self, x, embs=None, n_cntxt_layers=0):
        """Parse input sentence.

        Args:
        x: input tokens (required).
        pos: position for each token (optional).
        Returns:
        distance: syntactic distance
        height: syntactic height
        """

        mask = x != self.pad
        mask_shifted = F.pad(mask[:, 1:], (0, 1), value=0)

        if embs is None:
            h = self.roberta.embeddings(x)
        else:
            h = embs
        
        if n_cntxt_layers > 0:
            if n_cntxt_layers == 1:
                parser_layers = self.parser_layers_1
                height_ff = self.height_ff_1
                distance_ff = self.distance_ff_1
            elif n_cntxt_layers == 2:
                parser_layers = self.parser_layers_2
                height_ff = self.height_ff_2
                distance_ff = self.distance_ff_2
            for i in range(int(self.config.n_parser_layers/2)):
                h = h.masked_fill(~mask[:, :, None], 0)
                h = parser_layers[i](h)

            height = height_ff(h).squeeze(-1)
            height.masked_fill_(~mask, -1e9)

            distance = distance_ff(h).squeeze(-1)
            distance.masked_fill_(~mask_shifted, 1e9)

            # Calbrating the distance and height to the same level
            length = distance.size(1)
            height_max = height[:, None, :].expand(-1, length, -1)
            height_max = torch.cummax(
                height_max.triu(0) - torch.ones_like(height_max).tril(-1) * 1e9, dim=-1
            )[0].triu(0)

            margin_left = torch.relu(
                F.pad(distance[:, :-1, None], (0, 0, 1, 0), value=1e9) - height_max
            )
            margin_right = torch.relu(distance[:, None, :] - height_max)
            margin = torch.where(
                margin_left > margin_right, margin_right, margin_left
            ).triu(0)

            margin_mask = torch.stack([mask_shifted] + [mask] * (length - 1), dim=1)
            margin.masked_fill_(~margin_mask, 0)
            margin = margin.max()

            distance = distance - margin
        else:
            for i in range(self.config.n_parser_layers):
                h = h.masked_fill(~mask[:, :, None], 0)
                h = self.parser_layers[i](h)

            height = self.height_ff(h).squeeze(-1)
            height.masked_fill_(~mask, -1e9)

            distance = self.distance_ff(h).squeeze(-1)
            distance.masked_fill_(~mask_shifted, 1e9)

            # Calbrating the distance and height to the same level
            length = distance.size(1)
            height_max = height[:, None, :].expand(-1, length, -1)
            height_max = torch.cummax(
                height_max.triu(0) - torch.ones_like(height_max).tril(-1) * 1e9, dim=-1
            )[0].triu(0)

            margin_left = torch.relu(
                F.pad(distance[:, :-1, None], (0, 0, 1, 0), value=1e9) - height_max
            )
            margin_right = torch.relu(distance[:, None, :] - height_max)
            margin = torch.where(
                margin_left > margin_right, margin_right, margin_left
            ).triu(0)

            margin_mask = torch.stack([mask_shifted] + [mask] * (length - 1), dim=1)
            margin.masked_fill_(~margin_mask, 0)
            margin = margin.max()

            distance = distance - margin

        return distance, height

    def generate_mask(self, x, distance, height, n_cntxt_layers=0):
        """Compute head and cibling distribution for each token."""

        bsz, length = x.size()

        eye = torch.eye(length, device=x.device, dtype=torch.bool)
        eye = eye[None, :, :].expand((bsz, -1, -1))

        block_p, block = self.compute_block(distance, height, n_cntxt_layers=n_cntxt_layers)
        head_p = self.compute_head(height, n_cntxt_layers=n_cntxt_layers)
        head = torch.einsum("blij,bijh->blh", block_p, head_p)
        head = head.masked_fill(eye, 0)
        child = head.transpose(1, 2)
        cibling = torch.bmm(head, child).masked_fill(eye, 0)

        rel_list = []
        if "head" in self.config.relations:
            rel_list.append(head)
        if "child" in self.config.relations:
            rel_list.append(child)
        if "cibling" in self.config.relations:
            rel_list.append(cibling)

        rel = torch.stack(rel_list, dim=1)

        if n_cntxt_layers > 0:
            if n_cntxt_layers == 1:
                rel_weight = self.rel_weight_1
            elif n_cntxt_layers == 2:
                rel_weight = self.rel_weight_2
        else:
            rel_weight = self.rel_weight

        dep = torch.einsum("lhr,brij->lbhij", rel_weight, rel)
        
        if n_cntxt_layers == 1:
            num_layers = self.cntxt_layers_2.config.num_hidden_layers
        else:
            num_layers = self.roberta.config.num_hidden_layers
            
        att_mask = dep.reshape(
            num_layers,
            bsz,
            self.config.num_attention_heads,
            length,
            length,
        )

        return att_mask, cibling, head, block

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, SequenceClassifierOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        
        if self.config.n_cntxt_layers > 0:
            cntxt_outputs = self.cntxt_layers(
                input_ids,
                attention_mask=attention_mask,
                token_type_ids=token_type_ids,
                position_ids=position_ids,
                head_mask=head_mask,
                inputs_embeds=inputs_embeds,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict)
            
        
        if self.config.n_cntxt_layers_2 > 0:
            distance_1, height_1 = self.parse(input_ids, cntxt_outputs[0], n_cntxt_layers=1)
            att_mask_1, _, _, _ = self.generate_mask(input_ids, distance_1, height_1, n_cntxt_layers=1)
            
            cntxt_outputs_2 = self.cntxt_layers_2(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            parser_att_mask=att_mask_1)
            
            sequence_output = cntxt_outputs_2[0]
            
            distance_2, height_2 = self.parse(input_ids, sequence_output[0], n_cntxt_layers=2)
            att_mask, _, _, _ = self.generate_mask(input_ids, distance_2, height_2, n_cntxt_layers=2)

        elif self.config.n_cntxt_layers > 0:
            distance, height = self.parse(input_ids, cntxt_outputs[0])
            att_mask, _, _, _ = self.generate_mask(input_ids, distance, height)
        else:
            distance, height = self.parse(input_ids)
            att_mask, _, _, _ = self.generate_mask(input_ids, distance, height)

        outputs = self.roberta(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            parser_att_mask=att_mask,
        )
        sequence_output = outputs[0]
        logits = self.classifier(sequence_output)

        loss = None
        if labels is not None:
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(logits, labels)

        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


class RobertaClassificationHead(nn.Module):
    """Head for sentence-level classification tasks."""

    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        classifier_dropout = (
            config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
        )
        self.dropout = nn.Dropout(classifier_dropout)
        self.out_proj = nn.Linear(config.hidden_size, config.num_labels)

    def forward(self, features, **kwargs):
        x = features[:, 0, :]  # take <s> token (equiv. to [CLS])
        x = self.dropout(x)
        x = self.dense(x)
        x = torch.tanh(x)
        x = self.dropout(x)
        x = self.out_proj(x)
        return x


def create_position_ids_from_input_ids(
    input_ids, padding_idx, past_key_values_length=0
):
    """
    Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
    are ignored. This is modified from fairseq's `utils.make_positions`.

    Args:
        x: torch.Tensor x:

    Returns: torch.Tensor
    """
    # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
    mask = input_ids.ne(padding_idx).int()
    incremental_indices = (
        torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length
    ) * mask
    return incremental_indices.long() + padding_idx


def cumprod(x, reverse=False, exclusive=False):
    """cumulative product."""
    if reverse:
        x = x.flip([-1])

    if exclusive:
        x = F.pad(x[:, :, :-1], (1, 0), value=1)

    cx = x.cumprod(-1)

    if reverse:
        cx = cx.flip([-1])
    return cx


def cumsum(x, reverse=False, exclusive=False):
    """cumulative sum."""
    bsz, _, length = x.size()
    device = x.device
    if reverse:
        if exclusive:
            w = torch.ones([bsz, length, length], device=device).tril(-1)
        else:
            w = torch.ones([bsz, length, length], device=device).tril(0)
        cx = torch.bmm(x, w)
    else:
        if exclusive:
            w = torch.ones([bsz, length, length], device=device).triu(1)
        else:
            w = torch.ones([bsz, length, length], device=device).triu(0)
        cx = torch.bmm(x, w)
    return cx


def cummin(x, reverse=False, exclusive=False, max_value=1e9):
    """cumulative min."""
    if reverse:
        if exclusive:
            x = F.pad(x[:, :, 1:], (0, 1), value=max_value)
        x = x.flip([-1]).cummin(-1)[0].flip([-1])
    else:
        if exclusive:
            x = F.pad(x[:, :, :-1], (1, 0), value=max_value)
        x = x.cummin(-1)[0]
    return x