Work in progress

Classification report over all languages

             precision    recall  f1-score   support

           0       0.99      0.99      0.99  47903344
           .       0.94      0.95      0.95   2798780
           ,       0.85      0.84      0.85   3451618
           ?       0.88      0.85      0.87     88876
           -       0.61      0.32      0.42    157863
           :       0.72      0.52      0.60    103789

    accuracy                           0.98  54504270
   macro avg       0.83      0.75      0.78  54504270
weighted avg       0.98      0.98      0.98  54504270

How to cite us

@article{guhr-EtAl:2021:fullstop,
  title={FullStop: Multilingual Deep Models for Punctuation Prediction},
  author    = {Guhr, Oliver  and  Schumann, Anne-Kathrin  and  Bahrmann, Frank  and  Böhme, Hans Joachim},
  booktitle      = {Proceedings of the Swiss Text Analytics Conference 2021},
  month          = {June},
  year           = {2021},
  address        = {Winterthur, Switzerland},
  publisher      = {CEUR Workshop Proceedings},  
  url       = {http://ceur-ws.org/Vol-2957/sepp_paper4.pdf}
}
@misc{https://doi.org/10.48550/arxiv.2301.03319,
  doi = {10.48550/ARXIV.2301.03319},
  url = {https://arxiv.org/abs/2301.03319},
  author = {Vandeghinste, Vincent and Guhr, Oliver},
  keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences, I.2.7},
  title = {FullStop:Punctuation and Segmentation Prediction for Dutch with Transformers},
  publisher = {arXiv},
  year = {2023},  
  copyright = {Creative Commons Attribution Share Alike 4.0 International}
}
Downloads last month
9,093
Safetensors
Model size
277M params
Tensor type
I64
·
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Dataset used to train oliverguhr/fullstop-punctuation-multilingual-base