ppo-LunarLander-v2 / config.json
oliar's picture
Tried running the lunar lander PPO with 10mil timestamps; limited success.
9099526
raw
history blame
13.6 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7815ce6ac9d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7815ce6aca60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7815ce6acaf0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7815ce6acb80>", "_build": "<function ActorCriticPolicy._build at 0x7815ce6acc10>", "forward": "<function ActorCriticPolicy.forward at 0x7815ce6acca0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7815ce6acd30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7815ce6acdc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7815ce6ace50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7815ce6acee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7815ce6acf70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7815ce6ad000>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7815ce84a440>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 10010624, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1698505574986195902, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZ6JT7huvQ9Sp0av1+V374hd8o96kLIvgAAAAAAAAAAGo2hPb7/sj+1D9k+Nl18vr4z9j1Ceos+AAAAAAAAAAAzr4u7SPuIuoOqmzUz2JAv+RRGOk6csbQAAIA/AACAP82UNj177JW6/Q0yvQxYLDMCmjK7qz1PswAAgD8AAIA/cxnwPQfmrz9FiOU+1ULBvkDtaD5Tgp8+AAAAAAAAAAAzHds9tBPAP6aiIz/BV6A9/4SIPd4JvD4AAAAAAAAAAM14sDwUrpu43YLAs/4ygq7qJ9W7y3utMwAAgD8AAIA/AFg9O9dBFrs9c+g7SfSRPDWMErwz7Hs9AACAPwAAgD864D8++1pOP5/SNj7NVyG/Hc3uPq4liz0AAAAAAAAAAJqH0b3kQSY/MB+7vV2KV78+i4e+4gFvvAAAAAAAAAAAZra8vMqJrj9uWOO+u8byvkodCzz2HSW9AAAAAAAAAABmvF8+tVWGP+pdFT6/+TS/8sX4PnxwBD0AAAAAAAAAAM1TVz04jM896sGevsmtsr4NmJ29JTNVvgAAAAAAAAAAQNWmPaQdET5OBm++5IPJvoW0r7yGXjK+AAAAAAAAAAAAy4M8rjWEusgKZzMFZ5Wv2UN5uqs7wbMAAIA/AACAPwCjxLwrnoA9FBU1PnE52b66VFk97rjNPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0010623999999999079, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHKqO32EkB2MAWyUS7mMAXSUR0DBD4EOwxFidX2UKGgGR0BxsX0J4SpSaAdLnWgIR0DBD4Cx/ustdX2UKGgGR0BzeN+6RQrMaAdLnGgIR0DBD4kSCe3AdX2UKGgGR0Bv891B+nZTaAdLnGgIR0DBD6Ki22G7dX2UKGgGR0Bz91p35eqraAdLq2gIR0DBEgnuy/sWdX2UKGgGR0BvrN1r6+FlaAdLnWgIR0DBEgtEd/8VdX2UKGgGR0Bzg9RDTjNqaAdLvWgIR0DBEhYkcCHRdX2UKGgGR0BySV9c8kleaAdLuWgIR0DBEh1lK9PDdX2UKGgGR0ByZGUqx1PnaAdLrmgIR0DBEicgjhUBdX2UKGgGR0ByzxLBbfP5aAdLlGgIR0DBEikBKcurdX2UKGgGR0ByjRkf9xZMaAdLnGgIR0DBEjWx4Y78dX2UKGgGR0BzccLw4KhMaAdL3WgIR0DBEjypJf6XdX2UKGgGR0BvjbUy57PZaAdLqWgIR0DBEkSIpH7QdX2UKGgGR0Bw++gYgq3FaAdLoWgIR0DBEklxS5y3dX2UKGgGR0By2MKiO/+LaAdLmmgIR0DBElKtozvadX2UKGgGR0BzGif4AS39aAdL62gIR0DBElZHqeK9dX2UKGgGR0Byj+GdqcmTaAdLrWgIR0DBEmJT2nKodX2UKGgGR0BwthEXtShraAdLs2gIR0DBEmMDwH7hdX2UKGgGR0BxBCY0EX+EaAdLrWgIR0DBEm3RCx/vdX2UKGgGR0Bx8OphnanKaAdLlGgIR0DBEn1vES/TdX2UKGgGR0BvsCWNWEK3aAdLpmgIR0DBEpgFV1fWdX2UKGgGR0ByMdbPhQ3xaAdLl2gIR0DBEq3RTjvNdX2UKGgGR0Byw8+HJtBOaAdLqmgIR0DBEr8YGdI5dX2UKGgGR0Bz94c0cfeUaAdL0GgIR0DBEsEOf/WEdX2UKGgGR0ByUc7V8Ti9aAdLvGgIR0DBEsRSpBHDdX2UKGgGR0Bzg+EpRXOoaAdLyWgIR0DBEsfcN6PbdX2UKGgGR0Bx7YWac7QtaAdLr2gIR0DBEtwTqSowdX2UKGgGR0BzdjfqHGjsaAdLwmgIR0DBEuV3IMjNdX2UKGgGR0Bx6a/zreImaAdLm2gIR0DBEvLIq9XcdX2UKGgGR0Bx/Zs54nndaAdLsmgIR0DBEvVjPOY6dX2UKGgGR0Byfn0Cih38aAdLvmgIR0DBEvc0YTCcdX2UKGgGR0ByQTonrpqzaAdLvmgIR0DBEwPq/ub7dX2UKGgGR0Bzi8okRjBmaAdL3WgIR0DBEw7hR64UdX2UKGgGR0BxEU66reZYaAdLwWgIR0DBExSCFsYVdX2UKGgGR0BzYD1AZ88caAdLumgIR0DBExqbvw3HdX2UKGgGR0BywR62OQyRaAdLsGgIR0DBEyHFYMfBdX2UKGgGR0BwfzfvWpZPaAdLoWgIR0DBEyw9Pk7wdX2UKGgGR0BxrKACnxaxaAdLkmgIR0DBEzI3HaN/dX2UKGgGR0BxWKXZ5AyEaAdLp2gIR0DBE1TpaA4GdX2UKGgGR0Bv27tw71ZlaAdLoGgIR0DBE1c30f5ldX2UKGgGR0BzdyWv8qFzaAdLvWgIR0DBE2v/vOQhdX2UKGgGR0Bz31gUlAu7aAdLvGgIR0DBE254rz5HdX2UKGgGR0Bycctcv/R3aAdLi2gIR0DBE3OLNwBHdX2UKGgGR0ByBP1J17pnaAdLl2gIR0DBE4C17Y03dX2UKGgGR0Bxzx7+kxh2aAdLr2gIR0DBE4VipeeGdX2UKGgGR0ByPfQTmGM5aAdLwWgIR0DBE4yDPGADdX2UKGgGR0BycVe1KGtZaAdLl2gIR0DBE451ie/YdX2UKGgGR0BzzcmVqveQaAdLwmgIR0DBE6P/giu/dX2UKGgGR0Bx5c1tO2y+aAdLo2gIR0DBE7BDu0CzdX2UKGgGR0BxkDLDAJswaAdLtmgIR0DBE7uD3/PxdX2UKGgGR0ByrAfRu0kXaAdLm2gIR0DBE7xrxiG4dX2UKGgGR0ByHHHdXT3JaAdLwGgIR0DBE782aUiZdX2UKGgGR0ByJLkU9IPLaAdLsGgIR0DBE8RMN+b3dX2UKGgGR0BzcGg3974SaAdLrmgIR0DBE9N/x2B8dX2UKGgGR0BxrJCY1He8aAdLp2gIR0DBE++CK77LdX2UKGgGR0Byy2RaHKwIaAdLl2gIR0DBE/jzwtrcdX2UKGgGR0Bz/ZiZv1lHaAdLuGgIR0DBFAF7dBSldX2UKGgGR0BwopqTKT0QaAdLlWgIR0DBFA1MfzSUdX2UKGgGR0ByAM8IRh+faAdLs2gIR0DBFBPJYDDCdX2UKGgGR0By58EJSiudaAdLvGgIR0DBFBQ3gk1NdX2UKGgGR0Bxt/iCJ40NaAdLrmgIR0DBFBk4aP0adX2UKGgGR0BvVEvh60IDaAdLpGgIR0DBFBqeRPoFdX2UKGgGR0BwQ+4oZydXaAdLnGgIR0DBFDLEcbR4dX2UKGgGR0ByOWDK5kLAaAdLmWgIR0DBFDM1qFh5dX2UKGgGR0BzI1rcj7hvaAdLv2gIR0DBFDkhV2iddX2UKGgGR0B0QXpu/DceaAdL4GgIR0DBFD53Roh7dX2UKGgGR0By9Pk/8l5XaAdLsmgIR0DBFEC7K7qZdX2UKGgGR0Bxip4W1twaaAdLmWgIR0DBFEEK7ZnMdX2UKGgGR0BzOv3Cbc46aAdLw2gIR0DBFEMrmQr+dX2UKGgGR0BxVjp5eJHiaAdLnWgIR0DBFFN3+uNhdX2UKGgGR0Bzaj9kz41xaAdL0WgIR0DBFFXUYsNEdX2UKGgGR0BwenogV45caAdLj2gIR0DBFFa3XqZ/dX2UKGgGR0BvEVDc/MW5aAdLnWgIR0DBFFmZPVNIdX2UKGgGR0BRYU7bL2YfaAdLVGgIR0DBFGGJxeb/dX2UKGgGR0Bvdug3974SaAdLpmgIR0DBFGpftx+8dX2UKGgGR0BwMcaWHDaXaAdLqWgIR0DBFHJ17pmmdX2UKGgGR0ByhWbd8Aq/aAdLvWgIR0DBFH3zxwyZdX2UKGgGR0AlrEfDDTBqaAdLTGgIR0DBFIBCpm29dX2UKGgGR0ByXPPszEaVaAdLwWgIR0DBFIa5sj3VdX2UKGgGR0BzYop8WsRyaAdLymgIR0DBFI5g/keZdX2UKGgGR0Bzhtguyu6maAdLqWgIR0DBFKMGxD9gdX2UKGgGR0ByUCyTpxFRaAdLv2gIR0DBFKL0z0pWdX2UKGgGR0ByOVzCDVYqaAdLwmgIR0DBFKpvLowFdX2UKGgGR0ByDs4HX2/SaAdLumgIR0DBFK/6O5rhdX2UKGgGR0Bx77NnoPkJaAdLxWgIR0DBFLTG1hLHdX2UKGgGR0Byh6dYnv2HaAdLrmgIR0DBFLv3BYV7dX2UKGgGR0Bxc5vtMPBjaAdLrmgIR0DBFL9IuoP1dX2UKGgGR0Busiynk1dgaAdLnWgIR0DBFME56t1ZdX2UKGgGR0ByK/g4wRGuaAdLv2gIR0DBFMvbItDldX2UKGgGR0BxF/VAiV0LaAdLpGgIR0DBFNc+5e7ddX2UKGgGR0ByRxChN/OMaAdLh2gIR0DBFNlMPBi1dX2UKGgGR0B0Loo5PuXvaAdLwGgIR0DBFN+BOHnEdX2UKGgGR0By2AUAT7EYaAdLn2gIR0DBFOJ86V+rdX2UKGgGR0BzLwyfthNNaAdLwWgIR0DBFPT1EmY0dX2UKGgGR0Bz2U6nzg/DaAdLrWgIR0DBFPeOp84QdX2UKGgGR0BvKDwrlNlAaAdLl2gIR0DBFP5g3LmqdX2UKGgGR0Byg8tQKrq/aAdNVgFoCEdAwRULjghr33V9lChoBkdActGicG1QZWgHS5toCEdAwRUP1uBMBnV9lChoBkdAcg5Uoa1kUmgHS7JoCEdAwRUQ4ffXPXV9lChoBkdAcPVwe/5+IGgHS59oCEdAwRUWmjTKDHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2692, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}