add model
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +13 -13
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -2.59 +/- 0.81
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3acccc15b952b78c2360b24cced5faa76a11922e2c9664c0f7cbeb0c30daa564
|
3 |
+
size 108061
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc._abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -19,12 +19,12 @@
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
22 |
-
"num_timesteps":
|
23 |
-
"_total_timesteps":
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
-
"start_time":
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
@@ -33,10 +33,10 @@
|
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
-
":serialized:": "
|
37 |
-
"achieved_goal": "[[0.
|
38 |
-
"desired_goal": "[[
|
39 |
-
"observation": "[[0.
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -44,9 +44,9 @@
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
-
"desired_goal": "[[-0.
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
@@ -56,13 +56,13 @@
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
63 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
},
|
65 |
-
"_n_updates":
|
66 |
"n_steps": 5,
|
67 |
"gamma": 0.99,
|
68 |
"gae_lambda": 1.0,
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fafc1aaa170>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fafc1aa6d40>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
22 |
+
"num_timesteps": 500000,
|
23 |
+
"_total_timesteps": 500000,
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
+
"start_time": 1686915704597560587,
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
|
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA1kfCPuo84zwPEQ4/1kfCPuo84zwPEQ4/1kfCPuo84zwPEQ4/1kfCPuo84zwPEQ4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAS43Kv3CP1L+72wy/9XN5vnJlsD9z3NO+tSQhPxdvRb+p7yu+k14MP5u1sD/WhXy9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADWR8I+6jzjPA8RDj/w6Ca8GgnLOkr6ervWR8I+6jzjPA8RDj/w6Ca8GgnLOkr6ervWR8I+6jzjPA8RDj/w6Ca8GgnLOkr6ervWR8I+6jzjPA8RDj/w6Ca8GgnLOkr6eruUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[0.3794543 0.02773901 0.5549478 ]\n [0.3794543 0.02773901 0.5549478 ]\n [0.3794543 0.02773901 0.5549478 ]\n [0.3794543 0.02773901 0.5549478 ]]",
|
38 |
+
"desired_goal": "[[-1.5824369 -1.6606274 -0.5502278 ]\n [-0.2436064 1.3780959 -0.41379127]\n [ 0.62946635 -0.77122635 -0.16790642]\n [ 0.5483181 1.3805422 -0.06165107]]",
|
39 |
+
"observation": "[[ 0.3794543 0.02773901 0.5549478 -0.01018737 0.00154904 -0.00382962]\n [ 0.3794543 0.02773901 0.5549478 -0.01018737 0.00154904 -0.00382962]\n [ 0.3794543 0.02773901 0.5549478 -0.01018737 0.00154904 -0.00382962]\n [ 0.3794543 0.02773901 0.5549478 -0.01018737 0.00154904 -0.00382962]]"
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAJoYJviBIDz4UkyQ+6cOvvFl9jLwtWUE+kgaRvYychjuVw4A9zXCOva4tJTw2pjI8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[-0.1343008 0.13992357 0.16071731]\n [-0.02145572 -0.01714961 0.18881674]\n [-0.07081331 0.00410802 0.06287304]\n [-0.06955109 0.01008169 0.01090389]]",
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILzTXaaTl87+UhpRSlIwBbJRLMowBdJRHQJgb0NRWLgp1fZQoaAZoCWgPQwh0CYfe4mEPwJSGlFKUaBVLMmgWR0CYG1d69kBkdX2UKGgGaAloD0MIZhAf2PFfFcCUhpRSlGgVSzJoFkdAmBrdFF2FFnV9lChoBmgJaA9DCFSM8zehEO+/lIaUUpRoFUsyaBZHQJgaYTWXkYJ1fZQoaAZoCWgPQwhP6WD9nyMMwJSGlFKUaBVLMmgWR0CYHfq4YrJ9dX2UKGgGaAloD0MI4UGz694aFcCUhpRSlGgVSzJoFkdAmB2BfShJy3V9lChoBmgJaA9DCCvCTUaVwQDAlIaUUpRoFUsyaBZHQJgdBvwVj7R1fZQoaAZoCWgPQwiy1lBqL4IZwJSGlFKUaBVLMmgWR0CYHItNzr/sdX2UKGgGaAloD0MIfCjRksdT6r+UhpRSlGgVSzJoFkdAmCA3O4XoDHV9lChoBmgJaA9DCEQWaeId0BbAlIaUUpRoFUsyaBZHQJgfvdl/Yrd1fZQoaAZoCWgPQwhFDaZh+Ej+v5SGlFKUaBVLMmgWR0CYH0NWluWKdX2UKGgGaAloD0MIE0n0MoqlAcCUhpRSlGgVSzJoFkdAmB7HUtqYZ3V9lChoBmgJaA9DCPDeUWNCDPS/lIaUUpRoFUsyaBZHQJgibTnaFmF1fZQoaAZoCWgPQwjcnEoGgOoAwJSGlFKUaBVLMmgWR0CYIfQVsUItdX2UKGgGaAloD0MIRWXDmsqCDsCUhpRSlGgVSzJoFkdAmCF5ylvZRXV9lChoBmgJaA9DCHqM8szL4QDAlIaUUpRoFUsyaBZHQJgg/jR2KVJ1fZQoaAZoCWgPQwgaGk8Ece4XwJSGlFKUaBVLMmgWR0CYJOgOz6acdX2UKGgGaAloD0MIsd09QPelDcCUhpRSlGgVSzJoFkdAmCRux8lXzXV9lChoBmgJaA9DCLt868N6owPAlIaUUpRoFUsyaBZHQJgj9UtI0651fZQoaAZoCWgPQwhmn8coz4wRwJSGlFKUaBVLMmgWR0CYI3mFrVOLdX2UKGgGaAloD0MIAb1w58LI+7+UhpRSlGgVSzJoFkdAmCcHtF8XvnV9lChoBmgJaA9DCEzhQbPrHvK/lIaUUpRoFUsyaBZHQJgmjnSv1UV1fZQoaAZoCWgPQwhkz57L1OT+v5SGlFKUaBVLMmgWR0CYJhQizLOidX2UKGgGaAloD0MI2LlpM07DBcCUhpRSlGgVSzJoFkdAmCWYQ8OkL3V9lChoBmgJaA9DCPtZLEXydQDAlIaUUpRoFUsyaBZHQJgpX3PAwf11fZQoaAZoCWgPQwgwZktWRfgBwJSGlFKUaBVLMmgWR0CYKOY3Ns3ydX2UKGgGaAloD0MI8UV7vJAuAcCUhpRSlGgVSzJoFkdAmChsLSeAeHV9lChoBmgJaA9DCBMn9zsUNRDAlIaUUpRoFUsyaBZHQJgn8KzAvct1fZQoaAZoCWgPQwgGaFvNOnMRwJSGlFKUaBVLMmgWR0CYK4nW8RL9dX2UKGgGaAloD0MI0T/BxYraGMCUhpRSlGgVSzJoFkdAmCsQx8D0UXV9lChoBmgJaA9DCBa+vtalVhHAlIaUUpRoFUsyaBZHQJgqlmthd+p1fZQoaAZoCWgPQwhTexFtx5QEwJSGlFKUaBVLMmgWR0CYKhq9oN/fdX2UKGgGaAloD0MIg7709udCA8CUhpRSlGgVSzJoFkdAmC3Dh99c8nV9lChoBmgJaA9DCJ1kq8spAfa/lIaUUpRoFUsyaBZHQJgtSnLq2Sd1fZQoaAZoCWgPQwjQgHozap4IwJSGlFKUaBVLMmgWR0CYLNBAv+OwdX2UKGgGaAloD0MIK9mxEYjXBsCUhpRSlGgVSzJoFkdAmCxUgr6LwXV9lChoBmgJaA9DCIhJuJBH8BDAlIaUUpRoFUsyaBZHQJgv9UMoc711fZQoaAZoCWgPQwglCFdAob4MwJSGlFKUaBVLMmgWR0CYL3vrGBFvdX2UKGgGaAloD0MIFY4glWIHHcCUhpRSlGgVSzJoFkdAmC8BiLEUCnV9lChoBmgJaA9DCMUaLnJP9w3AlIaUUpRoFUsyaBZHQJguhbhWHUN1fZQoaAZoCWgPQwh+/nvw2oURwJSGlFKUaBVLMmgWR0CYMiFQEZBLdX2UKGgGaAloD0MIOnr83qY/B8CUhpRSlGgVSzJoFkdAmDGoSteUp3V9lChoBmgJaA9DCIarAyDuigbAlIaUUpRoFUsyaBZHQJgxLetSydF1fZQoaAZoCWgPQwj8yK1Jt8UDwJSGlFKUaBVLMmgWR0CYMLJVsDW9dX2UKGgGaAloD0MIycuaWOCrDMCUhpRSlGgVSzJoFkdAmDROqNp/PXV9lChoBmgJaA9DCOblsPuOYQDAlIaUUpRoFUsyaBZHQJgz1W4mTkh1fZQoaAZoCWgPQwg+BFWjV0MOwJSGlFKUaBVLMmgWR0CYM1stTUAldX2UKGgGaAloD0MIYmpLHeTlEcCUhpRSlGgVSzJoFkdAmDLfgaWHDnV9lChoBmgJaA9DCEmCcAUUKv+/lIaUUpRoFUsyaBZHQJg2bRTjvNN1fZQoaAZoCWgPQwgepRKe0OsPwJSGlFKUaBVLMmgWR0CYNfPeHi3odX2UKGgGaAloD0MIpvELrySZAsCUhpRSlGgVSzJoFkdAmDV5nctXgnV9lChoBmgJaA9DCBNDcjJxCwDAlIaUUpRoFUsyaBZHQJg0/btZ3cJ1fZQoaAZoCWgPQwh63o0FhcEDwJSGlFKUaBVLMmgWR0CYOJ6wdKdydX2UKGgGaAloD0MIRu7p6o5lBMCUhpRSlGgVSzJoFkdAmDgllkH2RXV9lChoBmgJaA9DCC9vDtdq7wfAlIaUUpRoFUsyaBZHQJg3q2G7Bft1fZQoaAZoCWgPQwiRQln4+tr9v5SGlFKUaBVLMmgWR0CYNy+7lJYldX2UKGgGaAloD0MIqU9yh03kB8CUhpRSlGgVSzJoFkdAmDrBshxHXnV9lChoBmgJaA9DCD6UaMnjyQzAlIaUUpRoFUsyaBZHQJg6SJsO5J91fZQoaAZoCWgPQwhkQPZ69+cBwJSGlFKUaBVLMmgWR0CYOc4qPOpsdX2UKGgGaAloD0MI4nK8AtHTAMCUhpRSlGgVSzJoFkdAmDlSUkfLcXV9lChoBmgJaA9DCAaf5uRFZv2/lIaUUpRoFUsyaBZHQJg9JzySV4Z1fZQoaAZoCWgPQwj2mbM+5XgDwJSGlFKUaBVLMmgWR0CYPK8TzunddX2UKGgGaAloD0MIbRtGQfB4DcCUhpRSlGgVSzJoFkdAmDw0vf0mMXV9lChoBmgJaA9DCOgyNQnesA3AlIaUUpRoFUsyaBZHQJg7uOcUdrB1fZQoaAZoCWgPQwiSO2wiMxcIwJSGlFKUaBVLMmgWR0CYP39uxbB5dX2UKGgGaAloD0MIdhiT/l7qAsCUhpRSlGgVSzJoFkdAmD8HiiqQzXV9lChoBmgJaA9DCKIJFLGIQQ3AlIaUUpRoFUsyaBZHQJg+jTCtRvZ1fZQoaAZoCWgPQwj2QCswZDX/v5SGlFKUaBVLMmgWR0CYPhF72L5zdX2UKGgGaAloD0MIK6T8pNrn9L+UhpRSlGgVSzJoFkdAmELuyJKraXV9lChoBmgJaA9DCN2VXTC4pgPAlIaUUpRoFUsyaBZHQJhCdzHS4ON1fZQoaAZoCWgPQwizYOKPoq4AwJSGlFKUaBVLMmgWR0CYQf6hQFcIdX2UKGgGaAloD0MIF2U2yCTj/b+UhpRSlGgVSzJoFkdAmEGE6T4cm3V9lChoBmgJaA9DCJYjZCDPbve/lIaUUpRoFUsyaBZHQJhGlxT850d1fZQoaAZoCWgPQwgDJ9vAHaj1v5SGlFKUaBVLMmgWR0CYRh9b5dnkdX2UKGgGaAloD0MIn8vUJHhD77+UhpRSlGgVSzJoFkdAmEWnDziCKHV9lChoBmgJaA9DCONw5ldzQP6/lIaUUpRoFUsyaBZHQJhFLMGHHm11fZQoaAZoCWgPQwhFt17TgyIKwJSGlFKUaBVLMmgWR0CYSjqkM1CPdX2UKGgGaAloD0MI2lazzvheAMCUhpRSlGgVSzJoFkdAmEnDujRD1HV9lChoBmgJaA9DCNv3qL9eofu/lIaUUpRoFUsyaBZHQJhJSyzHCGh1fZQoaAZoCWgPQwiPq5FdaRnzv5SGlFKUaBVLMmgWR0CYSNFqzqrzdX2UKGgGaAloD0MIj6m7sgvmAcCUhpRSlGgVSzJoFkdAmE6Ytcv/R3V9lChoBmgJaA9DCNgMcEG2LP2/lIaUUpRoFUsyaBZHQJhOIcxTKkl1fZQoaAZoCWgPQwgCu5o8ZTUFwJSGlFKUaBVLMmgWR0CYTaw/xDsudX2UKGgGaAloD0MIPdUhN8NN/b+UhpRSlGgVSzJoFkdAmE0zNliBoXV9lChoBmgJaA9DCGMNF7mnawfAlIaUUpRoFUsyaBZHQJhSkx59mYl1fZQoaAZoCWgPQwifVtEfmlkDwJSGlFKUaBVLMmgWR0CYUhtdRiw0dX2UKGgGaAloD0MIlL2lnC8297+UhpRSlGgVSzJoFkdAmFGiwOe8PHV9lChoBmgJaA9DCE5+i06WmgfAlIaUUpRoFUsyaBZHQJhRKEBbOeJ1fZQoaAZoCWgPQwhPkq6ZfPMFwJSGlFKUaBVLMmgWR0CYVoMN+b3HdX2UKGgGaAloD0MIJh5QNuWK9r+UhpRSlGgVSzJoFkdAmFYL4Ju2qnV9lChoBmgJaA9DCNjzNctlY/W/lIaUUpRoFUsyaBZHQJhVk580DU51fZQoaAZoCWgPQwhe9YB5yBQOwJSGlFKUaBVLMmgWR0CYVRmXgLqmdX2UKGgGaAloD0MIBwySPq0yEMCUhpRSlGgVSzJoFkdAmFlAZXMhYHV9lChoBmgJaA9DCDZzSGqhpAfAlIaUUpRoFUsyaBZHQJhYx00WM0h1fZQoaAZoCWgPQwhq2VpfJLQFwJSGlFKUaBVLMmgWR0CYWEy+pOvddX2UKGgGaAloD0MIzvqUY7L4CsCUhpRSlGgVSzJoFkdAmFfQ9zOopHV9lChoBmgJaA9DCMb6BiY3Cvu/lIaUUpRoFUsyaBZHQJhbcsf7rLR1fZQoaAZoCWgPQwjsa11qhD7+v5SGlFKUaBVLMmgWR0CYWvl/pdKNdX2UKGgGaAloD0MI0eY4twm3+7+UhpRSlGgVSzJoFkdAmFp/MOf/WHV9lChoBmgJaA9DCCzTLxFvXfq/lIaUUpRoFUsyaBZHQJhaAz41xbV1ZS4="
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
63 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
},
|
65 |
+
"_n_updates": 25000,
|
66 |
"n_steps": 5,
|
67 |
"gamma": 0.99,
|
68 |
"gae_lambda": 1.0,
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44734
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f4b25e7e51a955da1f01d700ae469a62cc7834cf3f3974b4e68a3a127231dcf
|
3 |
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:32ec85829df8c9905eb030a85d772f4ac9463b4f0e5740b564cc031cf648bbd7
|
3 |
size 46014
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f3514a129e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3514a0e900>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686611190736278053, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAACgXGPvygJz0kphk/CgXGPvygJz0kphk/CgXGPvygJz0kphk/CgXGPvygJz0kphk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAkluyPoSvy764hao/y4xXv4od2b4vp/++q5A4v3Vo0T3u9qI/SoNOP7Lmob9eYZC/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAKBcY+/KAnPSSmGT+eCD88YOTlOoVTKjwKBcY+/KAnPSSmGT+eCD88YOTlOoVTKjwKBcY+/KAnPSSmGT+eCD88YOTlOoVTKjwKBcY+/KAnPSSmGT+eCD88YOTlOoVTKjyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.3867572 0.04092501 0.60019135]\n [0.3867572 0.04092501 0.60019135]\n [0.3867572 0.04092501 0.60019135]\n [0.3867572 0.04092501 0.60019135]]", "desired_goal": "[[ 0.34835488 -0.39782345 1.3322058 ]\n [-0.8419921 -0.4240535 -0.49932238]\n [-0.72095746 0.10225002 1.2731607 ]\n [ 0.8066908 -1.2648528 -1.1279714 ]]", "observation": "[[0.3867572 0.04092501 0.60019135 0.01165977 0.00175394 0.01039589]\n [0.3867572 0.04092501 0.60019135 0.01165977 0.00175394 0.01039589]\n [0.3867572 0.04092501 0.60019135 0.01165977 0.00175394 0.01039589]\n [0.3867572 0.04092501 0.60019135 0.01165977 0.00175394 0.01039589]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA3nMLvkzforxtASs+tv+5PTHrDD6WGkA+Jcy8PY/WrL2kOeQ9jbZkvYqV6bskpJc+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.13618419 -0.01988187 0.16699763]\n [ 0.09081976 0.13761593 0.18760142]\n [ 0.09218625 -0.08439361 0.11143807]\n [-0.05583816 -0.00712842 0.29617417]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6PS8GwtKEsCUhpRSlIwBbJRLMowBdJRHQKb2Ki9Iwud1fZQoaAZoCWgPQwhYq3ZNSIsOwJSGlFKUaBVLMmgWR0Cm9diItUXIdX2UKGgGaAloD0MID2PS30tBBMCUhpRSlGgVSzJoFkdApvWEOXmeUnV9lChoBmgJaA9DCL5LqUvGkQjAlIaUUpRoFUsyaBZHQKb1Lw0fozN1fZQoaAZoCWgPQwgnZyjueNMAwJSGlFKUaBVLMmgWR0Cm9wXFUADJdX2UKGgGaAloD0MIhGIraFpyEsCUhpRSlGgVSzJoFkdApvaz52yLRHV9lChoBmgJaA9DCL3jFB3JZRXAlIaUUpRoFUsyaBZHQKb2X3g1m8N1fZQoaAZoCWgPQwgCZOjYQeUHwJSGlFKUaBVLMmgWR0Cm9gqXv6TGdX2UKGgGaAloD0MIzojS3uCrD8CUhpRSlGgVSzJoFkdApvfo+MZP23V9lChoBmgJaA9DCM/abReaawLAlIaUUpRoFUsyaBZHQKb3ly2hIvt1fZQoaAZoCWgPQwinA1lPrZ4KwJSGlFKUaBVLMmgWR0Cm90LKmsNldX2UKGgGaAloD0MIM/59xoVjDMCUhpRSlGgVSzJoFkdApvbtnEl3QnV9lChoBmgJaA9DCLd6TnrfeBDAlIaUUpRoFUsyaBZHQKb40ht+Csh1fZQoaAZoCWgPQwiNQSeEDnoHwJSGlFKUaBVLMmgWR0Cm+IBr30wrdX2UKGgGaAloD0MI4zYawFtADsCUhpRSlGgVSzJoFkdApvgsHjZL7HV9lChoBmgJaA9DCNJu9DEfMBPAlIaUUpRoFUsyaBZHQKb31xG2Cul1fZQoaAZoCWgPQwjObi2T4SgWwJSGlFKUaBVLMmgWR0Cm+bo55qubdX2UKGgGaAloD0MIXOhKBKo/DMCUhpRSlGgVSzJoFkdApvloXAM2FXV9lChoBmgJaA9DCPThWYKMwALAlIaUUpRoFUsyaBZHQKb5E/bj94x1fZQoaAZoCWgPQwgUeCefHgsYwJSGlFKUaBVLMmgWR0Cm+L7IT4+KdX2UKGgGaAloD0MIfxXgu81LE8CUhpRSlGgVSzJoFkdApvqsN+b3GnV9lChoBmgJaA9DCEcgXtcvGAXAlIaUUpRoFUsyaBZHQKb6WmUnogV1fZQoaAZoCWgPQwhWfa62Yt8KwJSGlFKUaBVLMmgWR0Cm+gX+l0o0dX2UKGgGaAloD0MI53Pudr0EGcCUhpRSlGgVSzJoFkdApvmw5BC2MXV9lChoBmgJaA9DCPIlVHB4QQfAlIaUUpRoFUsyaBZHQKb7nAWznih1fZQoaAZoCWgPQwj7XG3F/nIOwJSGlFKUaBVLMmgWR0Cm+0p35eqrdX2UKGgGaAloD0MI/S5szVZ+BcCUhpRSlGgVSzJoFkdApvr2HnEET3V9lChoBmgJaA9DCPbU6qurwgXAlIaUUpRoFUsyaBZHQKb6oOn2qT91fZQoaAZoCWgPQwjg9ZmzPsUMwJSGlFKUaBVLMmgWR0Cm/IKx9oexdX2UKGgGaAloD0MIv5oDBHP0CcCUhpRSlGgVSzJoFkdApvwwxHoX9HV9lChoBmgJaA9DCDPDRlm/uQLAlIaUUpRoFUsyaBZHQKb73FefI0Z1fZQoaAZoCWgPQwhz9Pi9Tb8QwJSGlFKUaBVLMmgWR0Cm+4dmpVCHdX2UKGgGaAloD0MIdGGkF7X7D8CUhpRSlGgVSzJoFkdApv1z83uNP3V9lChoBmgJaA9DCG1xjc9krxLAlIaUUpRoFUsyaBZHQKb9IjfNzKd1fZQoaAZoCWgPQwh56/zbZe8WwJSGlFKUaBVLMmgWR0Cm/M5B1LamdX2UKGgGaAloD0MIEvbtJCKcBcCUhpRSlGgVSzJoFkdApvx5D9fkWHV9lChoBmgJaA9DCP9Cjxg9FwHAlIaUUpRoFUsyaBZHQKb+VbDdgv11fZQoaAZoCWgPQwj9Z82Pv5QEwJSGlFKUaBVLMmgWR0Cm/gPRiPQwdX2UKGgGaAloD0MIhey8jc2uC8CUhpRSlGgVSzJoFkdApv2vcvduYXV9lChoBmgJaA9DCPWB5J1DOQfAlIaUUpRoFUsyaBZHQKb9Wkyk9EF1fZQoaAZoCWgPQwj2tS41Qv8HwJSGlFKUaBVLMmgWR0Cm/0GUnogWdX2UKGgGaAloD0MIXfjB+dQBEMCUhpRSlGgVSzJoFkdApv7vtMPBi3V9lChoBmgJaA9DCH+GN2vwLhbAlIaUUpRoFUsyaBZHQKb+m35vcah1fZQoaAZoCWgPQwhmEYqtoCkAwJSGlFKUaBVLMmgWR0Cm/kY4ACGOdX2UKGgGaAloD0MIRUYHJGHfCsCUhpRSlGgVSzJoFkdApwAnHHWBjHV9lChoBmgJaA9DCE5iEFg5VAHAlIaUUpRoFUsyaBZHQKb/1WFN+LF1fZQoaAZoCWgPQwjrAIi7erUYwJSGlFKUaBVLMmgWR0Cm/4E1uR9xdX2UKGgGaAloD0MIF0m70cf8BsCUhpRSlGgVSzJoFkdApv8sALiMpHV9lChoBmgJaA9DCKysbYrHRQzAlIaUUpRoFUsyaBZHQKcBEffXPJJ1fZQoaAZoCWgPQwjhRV9BmqETwJSGlFKUaBVLMmgWR0CnAMA0CRwIdX2UKGgGaAloD0MIFTYDXJCtBcCUhpRSlGgVSzJoFkdApwBsELYwqXV9lChoBmgJaA9DCCob1lQWJQXAlIaUUpRoFUsyaBZHQKcAFtPYWcl1fZQoaAZoCWgPQwih2uBE9IsUwJSGlFKUaBVLMmgWR0CnAf91loUSdX2UKGgGaAloD0MIdJmaBG+ICMCUhpRSlGgVSzJoFkdApwGtnAZbZHV9lChoBmgJaA9DCDdStkjaDQvAlIaUUpRoFUsyaBZHQKcBWTFERap1fZQoaAZoCWgPQwjzyvW2mQoHwJSGlFKUaBVLMmgWR0CnAQPt+kP+dX2UKGgGaAloD0MI9dvXgXPmCcCUhpRSlGgVSzJoFkdApwL0c81XNnV9lChoBmgJaA9DCNR/1vz4KwzAlIaUUpRoFUsyaBZHQKcCoo3Jgb91fZQoaAZoCWgPQwjt8UI6PKQZwJSGlFKUaBVLMmgWR0CnAk5XMhX9dX2UKGgGaAloD0MIy4XKv5bXDMCUhpRSlGgVSzJoFkdApwH5NsWO63V9lChoBmgJaA9DCN4hxQCJhgTAlIaUUpRoFUsyaBZHQKcD4VYZEUl1fZQoaAZoCWgPQwjfUzntKbkUwJSGlFKUaBVLMmgWR0CnA4/ViF0xdX2UKGgGaAloD0MI0NGqlnS0C8CUhpRSlGgVSzJoFkdApwM7jR2KVXV9lChoBmgJaA9DCDRLAtTUcgzAlIaUUpRoFUsyaBZHQKcC5m6Gxlh1fZQoaAZoCWgPQwgRV87eGc0MwJSGlFKUaBVLMmgWR0CnBNMJ6Y3OdX2UKGgGaAloD0MI0zJS76lcCsCUhpRSlGgVSzJoFkdApwSBVdX1anV9lChoBmgJaA9DCLckB+xqcgrAlIaUUpRoFUsyaBZHQKcELQcghbJ1fZQoaAZoCWgPQwiPccXFUTkKwJSGlFKUaBVLMmgWR0CnA9fUONHZdX2UKGgGaAloD0MIexFtx9TNEMCUhpRSlGgVSzJoFkdApwXL6YVqOHV9lChoBmgJaA9DCAX52ch18wjAlIaUUpRoFUsyaBZHQKcFeh9srNJ1fZQoaAZoCWgPQwgebLHbZ4UVwJSGlFKUaBVLMmgWR0CnBSYcNpdsdX2UKGgGaAloD0MIgufewyX3EcCUhpRSlGgVSzJoFkdApwTRljEvTXV9lChoBmgJaA9DCArcupunWgTAlIaUUpRoFUsyaBZHQKcHR7vXsgN1fZQoaAZoCWgPQwh63/jaM2sTwJSGlFKUaBVLMmgWR0CnBvb655JLdX2UKGgGaAloD0MI5rLROT/VEcCUhpRSlGgVSzJoFkdApwajaZhKDnV9lChoBmgJaA9DCDfdskP8AxPAlIaUUpRoFUsyaBZHQKcGTu3trsV1fZQoaAZoCWgPQwhHrptSXpsUwJSGlFKUaBVLMmgWR0CnCMTYukDZdX2UKGgGaAloD0MIx/DYz2IpB8CUhpRSlGgVSzJoFkdApwh0HGCI13V9lChoBmgJaA9DCIwQHm0csQbAlIaUUpRoFUsyaBZHQKcIIOZssQN1fZQoaAZoCWgPQwg1m8dhMF8TwJSGlFKUaBVLMmgWR0CnB8x5cC5mdX2UKGgGaAloD0MITN4AM99BBsCUhpRSlGgVSzJoFkdApwpj4pMHr3V9lChoBmgJaA9DCKMG0zB8ZArAlIaUUpRoFUsyaBZHQKcKEqyWzGB1fZQoaAZoCWgPQwhkJHuEmrEVwJSGlFKUaBVLMmgWR0CnCb8Hv+fidX2UKGgGaAloD0MIiZY8npafCcCUhpRSlGgVSzJoFkdApwlrBl+VknV9lChoBmgJaA9DCLbY7bPKDBbAlIaUUpRoFUsyaBZHQKcMGRL9MsZ1fZQoaAZoCWgPQwhJumbyzQYRwJSGlFKUaBVLMmgWR0CnC8gkLQXzdX2UKGgGaAloD0MICklm9Q5XF8CUhpRSlGgVSzJoFkdApwt0hNdqtnV9lChoBmgJaA9DCNUI/Uy9LhPAlIaUUpRoFUsyaBZHQKcLIAo5PuZ1fZQoaAZoCWgPQwjPZtXnausSwJSGlFKUaBVLMmgWR0CnDcNdRiw0dX2UKGgGaAloD0MIvi1YqgsYBcCUhpRSlGgVSzJoFkdApw1yRU3n6nV9lChoBmgJaA9DCE9Y4gFlcxHAlIaUUpRoFUsyaBZHQKcNHtwaR6p1fZQoaAZoCWgPQwiWs3dGW1UDwJSGlFKUaBVLMmgWR0CnDMp4KQaKdX2UKGgGaAloD0MIZQCo4sYtDsCUhpRSlGgVSzJoFkdApw9+r6tT1nV9lChoBmgJaA9DCDgUPlsHRw/AlIaUUpRoFUsyaBZHQKcPLjPOY6Z1fZQoaAZoCWgPQwjdzVMdcjMIwJSGlFKUaBVLMmgWR0CnDtq3uuzQdX2UKGgGaAloD0MIFk890uCWBcCUhpRSlGgVSzJoFkdApw6GfPHDJnV9lChoBmgJaA9DCCBgrdo1cRHAlIaUUpRoFUsyaBZHQKcQjoYekpJ1fZQoaAZoCWgPQwhYA5SGGpURwJSGlFKUaBVLMmgWR0CnEDyauwHJdX2UKGgGaAloD0MI48eYu5ZAF8CUhpRSlGgVSzJoFkdApw/oSxqwhXV9lChoBmgJaA9DCFeTp6ymSwrAlIaUUpRoFUsyaBZHQKcPkwdKdx11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fafc1aaa170>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fafc1aa6d40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 500000, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686915704597560587, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA1kfCPuo84zwPEQ4/1kfCPuo84zwPEQ4/1kfCPuo84zwPEQ4/1kfCPuo84zwPEQ4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAS43Kv3CP1L+72wy/9XN5vnJlsD9z3NO+tSQhPxdvRb+p7yu+k14MP5u1sD/WhXy9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADWR8I+6jzjPA8RDj/w6Ca8GgnLOkr6ervWR8I+6jzjPA8RDj/w6Ca8GgnLOkr6ervWR8I+6jzjPA8RDj/w6Ca8GgnLOkr6ervWR8I+6jzjPA8RDj/w6Ca8GgnLOkr6eruUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.3794543 0.02773901 0.5549478 ]\n [0.3794543 0.02773901 0.5549478 ]\n [0.3794543 0.02773901 0.5549478 ]\n [0.3794543 0.02773901 0.5549478 ]]", "desired_goal": "[[-1.5824369 -1.6606274 -0.5502278 ]\n [-0.2436064 1.3780959 -0.41379127]\n [ 0.62946635 -0.77122635 -0.16790642]\n [ 0.5483181 1.3805422 -0.06165107]]", "observation": "[[ 0.3794543 0.02773901 0.5549478 -0.01018737 0.00154904 -0.00382962]\n [ 0.3794543 0.02773901 0.5549478 -0.01018737 0.00154904 -0.00382962]\n [ 0.3794543 0.02773901 0.5549478 -0.01018737 0.00154904 -0.00382962]\n [ 0.3794543 0.02773901 0.5549478 -0.01018737 0.00154904 -0.00382962]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAJoYJviBIDz4UkyQ+6cOvvFl9jLwtWUE+kgaRvYychjuVw4A9zXCOva4tJTw2pjI8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.1343008 0.13992357 0.16071731]\n [-0.02145572 -0.01714961 0.18881674]\n [-0.07081331 0.00410802 0.06287304]\n [-0.06955109 0.01008169 0.01090389]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILzTXaaTl87+UhpRSlIwBbJRLMowBdJRHQJgb0NRWLgp1fZQoaAZoCWgPQwh0CYfe4mEPwJSGlFKUaBVLMmgWR0CYG1d69kBkdX2UKGgGaAloD0MIZhAf2PFfFcCUhpRSlGgVSzJoFkdAmBrdFF2FFnV9lChoBmgJaA9DCFSM8zehEO+/lIaUUpRoFUsyaBZHQJgaYTWXkYJ1fZQoaAZoCWgPQwhP6WD9nyMMwJSGlFKUaBVLMmgWR0CYHfq4YrJ9dX2UKGgGaAloD0MI4UGz694aFcCUhpRSlGgVSzJoFkdAmB2BfShJy3V9lChoBmgJaA9DCCvCTUaVwQDAlIaUUpRoFUsyaBZHQJgdBvwVj7R1fZQoaAZoCWgPQwiy1lBqL4IZwJSGlFKUaBVLMmgWR0CYHItNzr/sdX2UKGgGaAloD0MIfCjRksdT6r+UhpRSlGgVSzJoFkdAmCA3O4XoDHV9lChoBmgJaA9DCEQWaeId0BbAlIaUUpRoFUsyaBZHQJgfvdl/Yrd1fZQoaAZoCWgPQwhFDaZh+Ej+v5SGlFKUaBVLMmgWR0CYH0NWluWKdX2UKGgGaAloD0MIE0n0MoqlAcCUhpRSlGgVSzJoFkdAmB7HUtqYZ3V9lChoBmgJaA9DCPDeUWNCDPS/lIaUUpRoFUsyaBZHQJgibTnaFmF1fZQoaAZoCWgPQwjcnEoGgOoAwJSGlFKUaBVLMmgWR0CYIfQVsUItdX2UKGgGaAloD0MIRWXDmsqCDsCUhpRSlGgVSzJoFkdAmCF5ylvZRXV9lChoBmgJaA9DCHqM8szL4QDAlIaUUpRoFUsyaBZHQJgg/jR2KVJ1fZQoaAZoCWgPQwgaGk8Ece4XwJSGlFKUaBVLMmgWR0CYJOgOz6acdX2UKGgGaAloD0MIsd09QPelDcCUhpRSlGgVSzJoFkdAmCRux8lXzXV9lChoBmgJaA9DCLt868N6owPAlIaUUpRoFUsyaBZHQJgj9UtI0651fZQoaAZoCWgPQwhmn8coz4wRwJSGlFKUaBVLMmgWR0CYI3mFrVOLdX2UKGgGaAloD0MIAb1w58LI+7+UhpRSlGgVSzJoFkdAmCcHtF8XvnV9lChoBmgJaA9DCEzhQbPrHvK/lIaUUpRoFUsyaBZHQJgmjnSv1UV1fZQoaAZoCWgPQwhkz57L1OT+v5SGlFKUaBVLMmgWR0CYJhQizLOidX2UKGgGaAloD0MI2LlpM07DBcCUhpRSlGgVSzJoFkdAmCWYQ8OkL3V9lChoBmgJaA9DCPtZLEXydQDAlIaUUpRoFUsyaBZHQJgpX3PAwf11fZQoaAZoCWgPQwgwZktWRfgBwJSGlFKUaBVLMmgWR0CYKOY3Ns3ydX2UKGgGaAloD0MI8UV7vJAuAcCUhpRSlGgVSzJoFkdAmChsLSeAeHV9lChoBmgJaA9DCBMn9zsUNRDAlIaUUpRoFUsyaBZHQJgn8KzAvct1fZQoaAZoCWgPQwgGaFvNOnMRwJSGlFKUaBVLMmgWR0CYK4nW8RL9dX2UKGgGaAloD0MI0T/BxYraGMCUhpRSlGgVSzJoFkdAmCsQx8D0UXV9lChoBmgJaA9DCBa+vtalVhHAlIaUUpRoFUsyaBZHQJgqlmthd+p1fZQoaAZoCWgPQwhTexFtx5QEwJSGlFKUaBVLMmgWR0CYKhq9oN/fdX2UKGgGaAloD0MIg7709udCA8CUhpRSlGgVSzJoFkdAmC3Dh99c8nV9lChoBmgJaA9DCJ1kq8spAfa/lIaUUpRoFUsyaBZHQJgtSnLq2Sd1fZQoaAZoCWgPQwjQgHozap4IwJSGlFKUaBVLMmgWR0CYLNBAv+OwdX2UKGgGaAloD0MIK9mxEYjXBsCUhpRSlGgVSzJoFkdAmCxUgr6LwXV9lChoBmgJaA9DCIhJuJBH8BDAlIaUUpRoFUsyaBZHQJgv9UMoc711fZQoaAZoCWgPQwglCFdAob4MwJSGlFKUaBVLMmgWR0CYL3vrGBFvdX2UKGgGaAloD0MIFY4glWIHHcCUhpRSlGgVSzJoFkdAmC8BiLEUCnV9lChoBmgJaA9DCMUaLnJP9w3AlIaUUpRoFUsyaBZHQJguhbhWHUN1fZQoaAZoCWgPQwh+/nvw2oURwJSGlFKUaBVLMmgWR0CYMiFQEZBLdX2UKGgGaAloD0MIOnr83qY/B8CUhpRSlGgVSzJoFkdAmDGoSteUp3V9lChoBmgJaA9DCIarAyDuigbAlIaUUpRoFUsyaBZHQJgxLetSydF1fZQoaAZoCWgPQwj8yK1Jt8UDwJSGlFKUaBVLMmgWR0CYMLJVsDW9dX2UKGgGaAloD0MIycuaWOCrDMCUhpRSlGgVSzJoFkdAmDROqNp/PXV9lChoBmgJaA9DCOblsPuOYQDAlIaUUpRoFUsyaBZHQJgz1W4mTkh1fZQoaAZoCWgPQwg+BFWjV0MOwJSGlFKUaBVLMmgWR0CYM1stTUAldX2UKGgGaAloD0MIYmpLHeTlEcCUhpRSlGgVSzJoFkdAmDLfgaWHDnV9lChoBmgJaA9DCEmCcAUUKv+/lIaUUpRoFUsyaBZHQJg2bRTjvNN1fZQoaAZoCWgPQwgepRKe0OsPwJSGlFKUaBVLMmgWR0CYNfPeHi3odX2UKGgGaAloD0MIpvELrySZAsCUhpRSlGgVSzJoFkdAmDV5nctXgnV9lChoBmgJaA9DCBNDcjJxCwDAlIaUUpRoFUsyaBZHQJg0/btZ3cJ1fZQoaAZoCWgPQwh63o0FhcEDwJSGlFKUaBVLMmgWR0CYOJ6wdKdydX2UKGgGaAloD0MIRu7p6o5lBMCUhpRSlGgVSzJoFkdAmDgllkH2RXV9lChoBmgJaA9DCC9vDtdq7wfAlIaUUpRoFUsyaBZHQJg3q2G7Bft1fZQoaAZoCWgPQwiRQln4+tr9v5SGlFKUaBVLMmgWR0CYNy+7lJYldX2UKGgGaAloD0MIqU9yh03kB8CUhpRSlGgVSzJoFkdAmDrBshxHXnV9lChoBmgJaA9DCD6UaMnjyQzAlIaUUpRoFUsyaBZHQJg6SJsO5J91fZQoaAZoCWgPQwhkQPZ69+cBwJSGlFKUaBVLMmgWR0CYOc4qPOpsdX2UKGgGaAloD0MI4nK8AtHTAMCUhpRSlGgVSzJoFkdAmDlSUkfLcXV9lChoBmgJaA9DCAaf5uRFZv2/lIaUUpRoFUsyaBZHQJg9JzySV4Z1fZQoaAZoCWgPQwj2mbM+5XgDwJSGlFKUaBVLMmgWR0CYPK8TzunddX2UKGgGaAloD0MIbRtGQfB4DcCUhpRSlGgVSzJoFkdAmDw0vf0mMXV9lChoBmgJaA9DCOgyNQnesA3AlIaUUpRoFUsyaBZHQJg7uOcUdrB1fZQoaAZoCWgPQwiSO2wiMxcIwJSGlFKUaBVLMmgWR0CYP39uxbB5dX2UKGgGaAloD0MIdhiT/l7qAsCUhpRSlGgVSzJoFkdAmD8HiiqQzXV9lChoBmgJaA9DCKIJFLGIQQ3AlIaUUpRoFUsyaBZHQJg+jTCtRvZ1fZQoaAZoCWgPQwj2QCswZDX/v5SGlFKUaBVLMmgWR0CYPhF72L5zdX2UKGgGaAloD0MIK6T8pNrn9L+UhpRSlGgVSzJoFkdAmELuyJKraXV9lChoBmgJaA9DCN2VXTC4pgPAlIaUUpRoFUsyaBZHQJhCdzHS4ON1fZQoaAZoCWgPQwizYOKPoq4AwJSGlFKUaBVLMmgWR0CYQf6hQFcIdX2UKGgGaAloD0MIF2U2yCTj/b+UhpRSlGgVSzJoFkdAmEGE6T4cm3V9lChoBmgJaA9DCJYjZCDPbve/lIaUUpRoFUsyaBZHQJhGlxT850d1fZQoaAZoCWgPQwgDJ9vAHaj1v5SGlFKUaBVLMmgWR0CYRh9b5dnkdX2UKGgGaAloD0MIn8vUJHhD77+UhpRSlGgVSzJoFkdAmEWnDziCKHV9lChoBmgJaA9DCONw5ldzQP6/lIaUUpRoFUsyaBZHQJhFLMGHHm11fZQoaAZoCWgPQwhFt17TgyIKwJSGlFKUaBVLMmgWR0CYSjqkM1CPdX2UKGgGaAloD0MI2lazzvheAMCUhpRSlGgVSzJoFkdAmEnDujRD1HV9lChoBmgJaA9DCNv3qL9eofu/lIaUUpRoFUsyaBZHQJhJSyzHCGh1fZQoaAZoCWgPQwiPq5FdaRnzv5SGlFKUaBVLMmgWR0CYSNFqzqrzdX2UKGgGaAloD0MIj6m7sgvmAcCUhpRSlGgVSzJoFkdAmE6Ytcv/R3V9lChoBmgJaA9DCNgMcEG2LP2/lIaUUpRoFUsyaBZHQJhOIcxTKkl1fZQoaAZoCWgPQwgCu5o8ZTUFwJSGlFKUaBVLMmgWR0CYTaw/xDsudX2UKGgGaAloD0MIPdUhN8NN/b+UhpRSlGgVSzJoFkdAmE0zNliBoXV9lChoBmgJaA9DCGMNF7mnawfAlIaUUpRoFUsyaBZHQJhSkx59mYl1fZQoaAZoCWgPQwifVtEfmlkDwJSGlFKUaBVLMmgWR0CYUhtdRiw0dX2UKGgGaAloD0MIlL2lnC8297+UhpRSlGgVSzJoFkdAmFGiwOe8PHV9lChoBmgJaA9DCE5+i06WmgfAlIaUUpRoFUsyaBZHQJhRKEBbOeJ1fZQoaAZoCWgPQwhPkq6ZfPMFwJSGlFKUaBVLMmgWR0CYVoMN+b3HdX2UKGgGaAloD0MIJh5QNuWK9r+UhpRSlGgVSzJoFkdAmFYL4Ju2qnV9lChoBmgJaA9DCNjzNctlY/W/lIaUUpRoFUsyaBZHQJhVk580DU51fZQoaAZoCWgPQwhe9YB5yBQOwJSGlFKUaBVLMmgWR0CYVRmXgLqmdX2UKGgGaAloD0MIBwySPq0yEMCUhpRSlGgVSzJoFkdAmFlAZXMhYHV9lChoBmgJaA9DCDZzSGqhpAfAlIaUUpRoFUsyaBZHQJhYx00WM0h1fZQoaAZoCWgPQwhq2VpfJLQFwJSGlFKUaBVLMmgWR0CYWEy+pOvddX2UKGgGaAloD0MIzvqUY7L4CsCUhpRSlGgVSzJoFkdAmFfQ9zOopHV9lChoBmgJaA9DCMb6BiY3Cvu/lIaUUpRoFUsyaBZHQJhbcsf7rLR1fZQoaAZoCWgPQwjsa11qhD7+v5SGlFKUaBVLMmgWR0CYWvl/pdKNdX2UKGgGaAloD0MI0eY4twm3+7+UhpRSlGgVSzJoFkdAmFp/MOf/WHV9lChoBmgJaA9DCCzTLxFvXfq/lIaUUpRoFUsyaBZHQJhaAz41xbV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 25000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -2.590053979028016, "std_reward": 0.8062637827500367, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-16T12:26:24.509888"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2387
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c908f95c0320f19afd05b40eecb7650cd718ab7b64c446b82732d12a497421ff
|
3 |
size 2387
|