Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -2.62 +/- 1.16
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be512848fb284cadf6c78423fd954c687e27af831268331e96a7413f9d0e55a5
|
3 |
+
size 108023
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ff7fb3781f0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7ff7fb36fc00>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1676487315450469841,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAIWfcPkXcj7wMqQ4/IWfcPkXcj7wMqQ4/IWfcPkXcj7wMqQ4/IWfcPkXcj7wMqQ4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA5ADTPfW4h7/P6J8/rtoyvwp5xT/lNi89EOSXv15Eor+to1s/2gCcv0ieuT+LG/O+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAhZ9w+RdyPvAypDj+nloU7sfzAu/ziQjwhZ9w+RdyPvAypDj+nloU7sfzAu/ziQjwhZ9w+RdyPvAypDj+nloU7sfzAu/ziQjwhZ9w+RdyPvAypDj+nloU7sfzAu/ziQjyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[ 0.4304743 -0.01756109 0.55726695]\n [ 0.4304743 -0.01756109 0.55726695]\n [ 0.4304743 -0.01756109 0.55726695]\n [ 0.4304743 -0.01756109 0.55726695]]",
|
60 |
+
"desired_goal": "[[ 0.10302904 -1.060332 1.2492923 ]\n [-0.6986493 1.5427563 0.04277696]\n [-1.1866474 -1.2677114 0.85796624]\n [-1.218776 1.4501429 -0.4748195 ]]",
|
61 |
+
"observation": "[[ 0.4304743 -0.01756109 0.55726695 0.0040768 -0.0058895 0.01189494]\n [ 0.4304743 -0.01756109 0.55726695 0.0040768 -0.0058895 0.01189494]\n [ 0.4304743 -0.01756109 0.55726695 0.0040768 -0.0058895 0.01189494]\n [ 0.4304743 -0.01756109 0.55726695 0.0040768 -0.0058895 0.01189494]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA4t6rvZEhbryYx5M+YuqcPYKopL2Ib3c9I1+MPKJxFT4246c9v6h8Pa0kbD2y2Yk+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[-0.08392121 -0.01453437 0.28863215]\n [ 0.07661892 -0.08039953 0.0604091 ]\n [ 0.01713521 0.14594129 0.08197634]\n [ 0.06168437 0.05765216 0.269239 ]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIpddmYyVGAcCUhpRSlIwBbJRLMowBdJRHQKc8RBmf5DZ1fZQoaAZoCWgPQwhGIjSCjWsBwJSGlFKUaBVLMmgWR0CnO/D7yhBadX2UKGgGaAloD0MI4PPDCOHR97+UhpRSlGgVSzJoFkdApzu0BbOeKHV9lChoBmgJaA9DCFKazeMwmPa/lIaUUpRoFUsyaBZHQKc7dtvXK8t1fZQoaAZoCWgPQwiwrZ/+sybxv5SGlFKUaBVLMmgWR0CnPVPnB+F2dX2UKGgGaAloD0MII59XPPUoBMCUhpRSlGgVSzJoFkdApz0BFTefqXV9lChoBmgJaA9DCP1oOGVu/vG/lIaUUpRoFUsyaBZHQKc8xCj1wo91fZQoaAZoCWgPQwgq5iDoaNXxv5SGlFKUaBVLMmgWR0CnPIbe/Ho6dX2UKGgGaAloD0MIpDUGnRD6/7+UhpRSlGgVSzJoFkdApz5WmFaje3V9lChoBmgJaA9DCNi3k4jwL/u/lIaUUpRoFUsyaBZHQKc+A8QqZtx1fZQoaAZoCWgPQwiZnrDEA0r7v5SGlFKUaBVLMmgWR0CnPcbGNrCWdX2UKGgGaAloD0MIZePBFrv9+7+UhpRSlGgVSzJoFkdApz2JOrQw9XV9lChoBmgJaA9DCKlPcodNZP2/lIaUUpRoFUsyaBZHQKc/czXSSeR1fZQoaAZoCWgPQwjFqkGY2z3tv5SGlFKUaBVLMmgWR0CnPyBppN9IdX2UKGgGaAloD0MIB+xq8pTV77+UhpRSlGgVSzJoFkdApz7jkyULUnV9lChoBmgJaA9DCO3UXG4w1PO/lIaUUpRoFUsyaBZHQKc+pwF1SwZ1fZQoaAZoCWgPQwjdek0PCorzv5SGlFKUaBVLMmgWR0CnQJfB3zMBdX2UKGgGaAloD0MI7iHhe3+D9L+UhpRSlGgVSzJoFkdAp0BE+RoysXV9lChoBmgJaA9DCHE5XoHoyfW/lIaUUpRoFUsyaBZHQKdAB/HYHxB1fZQoaAZoCWgPQwjdlV0wuOb6v5SGlFKUaBVLMmgWR0CnP8rH2h7FdX2UKGgGaAloD0MIUKkSZW+p57+UhpRSlGgVSzJoFkdAp0G2c+aBqnV9lChoBmgJaA9DCHef46PFGQLAlIaUUpRoFUsyaBZHQKdBY7hegL91fZQoaAZoCWgPQwgOTkS/tv7tv5SGlFKUaBVLMmgWR0CnQSa/7BO6dX2UKGgGaAloD0MImzxlNV3P9r+UhpRSlGgVSzJoFkdAp0DpnnMdLnV9lChoBmgJaA9DCDPcgM8PI/S/lIaUUpRoFUsyaBZHQKdC8waBI4F1fZQoaAZoCWgPQwiI9NvXgXPhv5SGlFKUaBVLMmgWR0CnQqBMi8nNdX2UKGgGaAloD0MIXKrSFte4AcCUhpRSlGgVSzJoFkdAp0JjZ39rGnV9lChoBmgJaA9DCHv3x3vVyvu/lIaUUpRoFUsyaBZHQKdCJqzqrzZ1fZQoaAZoCWgPQwisxhLWxlgPwJSGlFKUaBVLMmgWR0CnRAjIBBAwdX2UKGgGaAloD0MIMBNFSN1O5r+UhpRSlGgVSzJoFkdAp0O1+uvECXV9lChoBmgJaA9DCGeAC7JlefS/lIaUUpRoFUsyaBZHQKdDeQeV9nd1fZQoaAZoCWgPQwhWSPlJtU/7v5SGlFKUaBVLMmgWR0CnQzvMjeKsdX2UKGgGaAloD0MIQ1iNJaztBMCUhpRSlGgVSzJoFkdAp0UYWrOqvXV9lChoBmgJaA9DCMvapnhclPW/lIaUUpRoFUsyaBZHQKdExW3BpHt1fZQoaAZoCWgPQwhgPlkxXP0JwJSGlFKUaBVLMmgWR0CnRIhyKekIdX2UKGgGaAloD0MI7YLBNXc0/r+UhpRSlGgVSzJoFkdAp0RLSE12q3V9lChoBmgJaA9DCORLqODwQvy/lIaUUpRoFUsyaBZHQKdGHOvdM0x1fZQoaAZoCWgPQwgV/aGZJ/cMwJSGlFKUaBVLMmgWR0CnRcoWgvlEdX2UKGgGaAloD0MIjbeVXpuN+L+UhpRSlGgVSzJoFkdAp0WMyad+X3V9lChoBmgJaA9DCDv8NVmjnv2/lIaUUpRoFUsyaBZHQKdFT1VYISl1fZQoaAZoCWgPQwgVqwZhbnf1v5SGlFKUaBVLMmgWR0CnRy1GTcIrdX2UKGgGaAloD0MIGXYYk/6eAsCUhpRSlGgVSzJoFkdAp0bbZDiOvXV9lChoBmgJaA9DCPKyJhb4Cv6/lIaUUpRoFUsyaBZHQKdGn3L3bmF1fZQoaAZoCWgPQwg4S8lyEooAwJSGlFKUaBVLMmgWR0CnRmKslsxgdX2UKGgGaAloD0MIyGDFqdbCEMCUhpRSlGgVSzJoFkdAp0ipKtga33V9lChoBmgJaA9DCG9iSE4mLvy/lIaUUpRoFUsyaBZHQKdIVrIo3Jh1fZQoaAZoCWgPQwgiOC7jpkYHwJSGlFKUaBVLMmgWR0CnSBoZ62ORdX2UKGgGaAloD0MIi98UVioIAcCUhpRSlGgVSzJoFkdAp0fdpyp71XV9lChoBmgJaA9DCCpwsg3cQQ3AlIaUUpRoFUsyaBZHQKdKOckMTex1fZQoaAZoCWgPQwhKKH0h5LwBwJSGlFKUaBVLMmgWR0CnSedNvfj0dX2UKGgGaAloD0MIg6EOK9yyAsCUhpRSlGgVSzJoFkdAp0mqpDNQj3V9lChoBmgJaA9DCG/yW3Sy9AjAlIaUUpRoFUsyaBZHQKdJbl6JIlN1fZQoaAZoCWgPQwhlUG1wIhoEwJSGlFKUaBVLMmgWR0CnS/W12JSBdX2UKGgGaAloD0MIoKcBg6SPCMCUhpRSlGgVSzJoFkdAp0ujyJ9Ao3V9lChoBmgJaA9DCKH2WztREgDAlIaUUpRoFUsyaBZHQKdLZ06o2n91fZQoaAZoCWgPQwjiWu1hL3QEwJSGlFKUaBVLMmgWR0CnSysiB5HFdX2UKGgGaAloD0MIDkqYaftnEcCUhpRSlGgVSzJoFkdAp02vOlfqo3V9lChoBmgJaA9DCINuL2mMFgbAlIaUUpRoFUsyaBZHQKdNXYgaFVV1fZQoaAZoCWgPQwjOOXgmNAkDwJSGlFKUaBVLMmgWR0CnTSFYMfA9dX2UKGgGaAloD0MI8u1dg740BMCUhpRSlGgVSzJoFkdAp0zlVghKUXV9lChoBmgJaA9DCHmUSnhC7/q/lIaUUpRoFUsyaBZHQKdPX6wdKdx1fZQoaAZoCWgPQwjNIamFkon+v5SGlFKUaBVLMmgWR0CnTw0+kgwHdX2UKGgGaAloD0MI1LmilBBMCcCUhpRSlGgVSzJoFkdAp07Q0hvBJ3V9lChoBmgJaA9DCBo2yvrN9BDAlIaUUpRoFUsyaBZHQKdOlPSDyvt1fZQoaAZoCWgPQwjPMSB7vXv9v5SGlFKUaBVLMmgWR0CnUPUQbuMNdX2UKGgGaAloD0MItvepKjRQ/7+UhpRSlGgVSzJoFkdAp1CirksBhnV9lChoBmgJaA9DCFzJjo1A/Pq/lIaUUpRoFUsyaBZHQKdQZx7RfF91fZQoaAZoCWgPQwj/klSmmCMCwJSGlFKUaBVLMmgWR0CnUCrqD9OzdX2UKGgGaAloD0MITweynlp9/b+UhpRSlGgVSzJoFkdAp1JURWcSXnV9lChoBmgJaA9DCCFblq/LsP+/lIaUUpRoFUsyaBZHQKdSASfUWmB1fZQoaAZoCWgPQwgx0SAFTyEEwJSGlFKUaBVLMmgWR0CnUcS3CsOodX2UKGgGaAloD0MIdOygEtcRA8CUhpRSlGgVSzJoFkdAp1GHNFBppXV9lChoBmgJaA9DCKOSOgFNpAjAlIaUUpRoFUsyaBZHQKdTU0j1PFh1fZQoaAZoCWgPQwjSAUnYt9P3v5SGlFKUaBVLMmgWR0CnUwBHTZxrdX2UKGgGaAloD0MIQBTMmII1/L+UhpRSlGgVSzJoFkdAp1LDFbVz63V9lChoBmgJaA9DCBAIdCZt6gnAlIaUUpRoFUsyaBZHQKdShevZAY51fZQoaAZoCWgPQwjk2lAxzp//v5SGlFKUaBVLMmgWR0CnVEbdi2DydX2UKGgGaAloD0MIqg1ORL/2AsCUhpRSlGgVSzJoFkdAp1Pz/4qPO3V9lChoBmgJaA9DCO+OjNXm3wPAlIaUUpRoFUsyaBZHQKdTtrM1TBJ1fZQoaAZoCWgPQwi/DwcJUb7+v5SGlFKUaBVLMmgWR0CnU3lOwgTzdX2UKGgGaAloD0MI2scKfhsCAcCUhpRSlGgVSzJoFkdAp1VP5BTn73V9lChoBmgJaA9DCBuBeF2/gArAlIaUUpRoFUsyaBZHQKdU/Ssr/bV1fZQoaAZoCWgPQwj8VYDvNl8WwJSGlFKUaBVLMmgWR0CnVMBIOH32dX2UKGgGaAloD0MINdHno4yYB8CUhpRSlGgVSzJoFkdAp1SDBl+VknV9lChoBmgJaA9DCDi/YaJBCgjAlIaUUpRoFUsyaBZHQKdWc+6iCat1fZQoaAZoCWgPQwgBbECEuFIFwJSGlFKUaBVLMmgWR0CnViEWIoE0dX2UKGgGaAloD0MITUwXYvXnA8CUhpRSlGgVSzJoFkdAp1XkwWWQfnV9lChoBmgJaA9DCPRSsTGvAwXAlIaUUpRoFUsyaBZHQKdVqBMBZIR1fZQoaAZoCWgPQwgAdQMF3okQwJSGlFKUaBVLMmgWR0CnV3WgnMMadX2UKGgGaAloD0MIaF2j5UAPA8CUhpRSlGgVSzJoFkdAp1cjEvTPSnV9lChoBmgJaA9DCOQs7GmH//2/lIaUUpRoFUsyaBZHQKdW5gSeyzJ1fZQoaAZoCWgPQwiXAz3UtmEEwJSGlFKUaBVLMmgWR0CnVqjD8+A3dX2UKGgGaAloD0MIByeiX1s/+b+UhpRSlGgVSzJoFkdAp1h1mthd+3V9lChoBmgJaA9DCBIWFXE6yQDAlIaUUpRoFUsyaBZHQKdYIqQzUI91fZQoaAZoCWgPQwgcCp+tg0P7v5SGlFKUaBVLMmgWR0CnV+V2aDwpdX2UKGgGaAloD0MI1UFeDyaFBMCUhpRSlGgVSzJoFkdAp1eoEfT1CnV9lChoBmgJaA9DCKimJOtwNP2/lIaUUpRoFUsyaBZHQKdZibWmP5p1fZQoaAZoCWgPQwjwT6kSZR8QwJSGlFKUaBVLMmgWR0CnWTb4zrNXdX2UKGgGaAloD0MIBd1e0hjtBsCUhpRSlGgVSzJoFkdAp1j6Cxu89XV9lChoBmgJaA9DCO+P96qV6QPAlIaUUpRoFUsyaBZHQKdYvJJ5E+h1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:30df2e8004760a85bdd9f5c84daf7eb3c4d7c928849536f85bb7c505eabaafa8
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:508e4b63e571d432afb898feae73c58bfb0de3ba9eb09d62f4e07ebe5a585240
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ff7fb3781f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff7fb36fc00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676487315450469841, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAIWfcPkXcj7wMqQ4/IWfcPkXcj7wMqQ4/IWfcPkXcj7wMqQ4/IWfcPkXcj7wMqQ4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA5ADTPfW4h7/P6J8/rtoyvwp5xT/lNi89EOSXv15Eor+to1s/2gCcv0ieuT+LG/O+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAhZ9w+RdyPvAypDj+nloU7sfzAu/ziQjwhZ9w+RdyPvAypDj+nloU7sfzAu/ziQjwhZ9w+RdyPvAypDj+nloU7sfzAu/ziQjwhZ9w+RdyPvAypDj+nloU7sfzAu/ziQjyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.4304743 -0.01756109 0.55726695]\n [ 0.4304743 -0.01756109 0.55726695]\n [ 0.4304743 -0.01756109 0.55726695]\n [ 0.4304743 -0.01756109 0.55726695]]", "desired_goal": "[[ 0.10302904 -1.060332 1.2492923 ]\n [-0.6986493 1.5427563 0.04277696]\n [-1.1866474 -1.2677114 0.85796624]\n [-1.218776 1.4501429 -0.4748195 ]]", "observation": "[[ 0.4304743 -0.01756109 0.55726695 0.0040768 -0.0058895 0.01189494]\n [ 0.4304743 -0.01756109 0.55726695 0.0040768 -0.0058895 0.01189494]\n [ 0.4304743 -0.01756109 0.55726695 0.0040768 -0.0058895 0.01189494]\n [ 0.4304743 -0.01756109 0.55726695 0.0040768 -0.0058895 0.01189494]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA4t6rvZEhbryYx5M+YuqcPYKopL2Ib3c9I1+MPKJxFT4246c9v6h8Pa0kbD2y2Yk+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.08392121 -0.01453437 0.28863215]\n [ 0.07661892 -0.08039953 0.0604091 ]\n [ 0.01713521 0.14594129 0.08197634]\n [ 0.06168437 0.05765216 0.269239 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIpddmYyVGAcCUhpRSlIwBbJRLMowBdJRHQKc8RBmf5DZ1fZQoaAZoCWgPQwhGIjSCjWsBwJSGlFKUaBVLMmgWR0CnO/D7yhBadX2UKGgGaAloD0MI4PPDCOHR97+UhpRSlGgVSzJoFkdApzu0BbOeKHV9lChoBmgJaA9DCFKazeMwmPa/lIaUUpRoFUsyaBZHQKc7dtvXK8t1fZQoaAZoCWgPQwiwrZ/+sybxv5SGlFKUaBVLMmgWR0CnPVPnB+F2dX2UKGgGaAloD0MII59XPPUoBMCUhpRSlGgVSzJoFkdApz0BFTefqXV9lChoBmgJaA9DCP1oOGVu/vG/lIaUUpRoFUsyaBZHQKc8xCj1wo91fZQoaAZoCWgPQwgq5iDoaNXxv5SGlFKUaBVLMmgWR0CnPIbe/Ho6dX2UKGgGaAloD0MIpDUGnRD6/7+UhpRSlGgVSzJoFkdApz5WmFaje3V9lChoBmgJaA9DCNi3k4jwL/u/lIaUUpRoFUsyaBZHQKc+A8QqZtx1fZQoaAZoCWgPQwiZnrDEA0r7v5SGlFKUaBVLMmgWR0CnPcbGNrCWdX2UKGgGaAloD0MIZePBFrv9+7+UhpRSlGgVSzJoFkdApz2JOrQw9XV9lChoBmgJaA9DCKlPcodNZP2/lIaUUpRoFUsyaBZHQKc/czXSSeR1fZQoaAZoCWgPQwjFqkGY2z3tv5SGlFKUaBVLMmgWR0CnPyBppN9IdX2UKGgGaAloD0MIB+xq8pTV77+UhpRSlGgVSzJoFkdApz7jkyULUnV9lChoBmgJaA9DCO3UXG4w1PO/lIaUUpRoFUsyaBZHQKc+pwF1SwZ1fZQoaAZoCWgPQwjdek0PCorzv5SGlFKUaBVLMmgWR0CnQJfB3zMBdX2UKGgGaAloD0MI7iHhe3+D9L+UhpRSlGgVSzJoFkdAp0BE+RoysXV9lChoBmgJaA9DCHE5XoHoyfW/lIaUUpRoFUsyaBZHQKdAB/HYHxB1fZQoaAZoCWgPQwjdlV0wuOb6v5SGlFKUaBVLMmgWR0CnP8rH2h7FdX2UKGgGaAloD0MIUKkSZW+p57+UhpRSlGgVSzJoFkdAp0G2c+aBqnV9lChoBmgJaA9DCHef46PFGQLAlIaUUpRoFUsyaBZHQKdBY7hegL91fZQoaAZoCWgPQwgOTkS/tv7tv5SGlFKUaBVLMmgWR0CnQSa/7BO6dX2UKGgGaAloD0MImzxlNV3P9r+UhpRSlGgVSzJoFkdAp0DpnnMdLnV9lChoBmgJaA9DCDPcgM8PI/S/lIaUUpRoFUsyaBZHQKdC8waBI4F1fZQoaAZoCWgPQwiI9NvXgXPhv5SGlFKUaBVLMmgWR0CnQqBMi8nNdX2UKGgGaAloD0MIXKrSFte4AcCUhpRSlGgVSzJoFkdAp0JjZ39rGnV9lChoBmgJaA9DCHv3x3vVyvu/lIaUUpRoFUsyaBZHQKdCJqzqrzZ1fZQoaAZoCWgPQwisxhLWxlgPwJSGlFKUaBVLMmgWR0CnRAjIBBAwdX2UKGgGaAloD0MIMBNFSN1O5r+UhpRSlGgVSzJoFkdAp0O1+uvECXV9lChoBmgJaA9DCGeAC7JlefS/lIaUUpRoFUsyaBZHQKdDeQeV9nd1fZQoaAZoCWgPQwhWSPlJtU/7v5SGlFKUaBVLMmgWR0CnQzvMjeKsdX2UKGgGaAloD0MIQ1iNJaztBMCUhpRSlGgVSzJoFkdAp0UYWrOqvXV9lChoBmgJaA9DCMvapnhclPW/lIaUUpRoFUsyaBZHQKdExW3BpHt1fZQoaAZoCWgPQwhgPlkxXP0JwJSGlFKUaBVLMmgWR0CnRIhyKekIdX2UKGgGaAloD0MI7YLBNXc0/r+UhpRSlGgVSzJoFkdAp0RLSE12q3V9lChoBmgJaA9DCORLqODwQvy/lIaUUpRoFUsyaBZHQKdGHOvdM0x1fZQoaAZoCWgPQwgV/aGZJ/cMwJSGlFKUaBVLMmgWR0CnRcoWgvlEdX2UKGgGaAloD0MIjbeVXpuN+L+UhpRSlGgVSzJoFkdAp0WMyad+X3V9lChoBmgJaA9DCDv8NVmjnv2/lIaUUpRoFUsyaBZHQKdFT1VYISl1fZQoaAZoCWgPQwgVqwZhbnf1v5SGlFKUaBVLMmgWR0CnRy1GTcIrdX2UKGgGaAloD0MIGXYYk/6eAsCUhpRSlGgVSzJoFkdAp0bbZDiOvXV9lChoBmgJaA9DCPKyJhb4Cv6/lIaUUpRoFUsyaBZHQKdGn3L3bmF1fZQoaAZoCWgPQwg4S8lyEooAwJSGlFKUaBVLMmgWR0CnRmKslsxgdX2UKGgGaAloD0MIyGDFqdbCEMCUhpRSlGgVSzJoFkdAp0ipKtga33V9lChoBmgJaA9DCG9iSE4mLvy/lIaUUpRoFUsyaBZHQKdIVrIo3Jh1fZQoaAZoCWgPQwgiOC7jpkYHwJSGlFKUaBVLMmgWR0CnSBoZ62ORdX2UKGgGaAloD0MIi98UVioIAcCUhpRSlGgVSzJoFkdAp0fdpyp71XV9lChoBmgJaA9DCCpwsg3cQQ3AlIaUUpRoFUsyaBZHQKdKOckMTex1fZQoaAZoCWgPQwhKKH0h5LwBwJSGlFKUaBVLMmgWR0CnSedNvfj0dX2UKGgGaAloD0MIg6EOK9yyAsCUhpRSlGgVSzJoFkdAp0mqpDNQj3V9lChoBmgJaA9DCG/yW3Sy9AjAlIaUUpRoFUsyaBZHQKdJbl6JIlN1fZQoaAZoCWgPQwhlUG1wIhoEwJSGlFKUaBVLMmgWR0CnS/W12JSBdX2UKGgGaAloD0MIoKcBg6SPCMCUhpRSlGgVSzJoFkdAp0ujyJ9Ao3V9lChoBmgJaA9DCKH2WztREgDAlIaUUpRoFUsyaBZHQKdLZ06o2n91fZQoaAZoCWgPQwjiWu1hL3QEwJSGlFKUaBVLMmgWR0CnSysiB5HFdX2UKGgGaAloD0MIDkqYaftnEcCUhpRSlGgVSzJoFkdAp02vOlfqo3V9lChoBmgJaA9DCINuL2mMFgbAlIaUUpRoFUsyaBZHQKdNXYgaFVV1fZQoaAZoCWgPQwjOOXgmNAkDwJSGlFKUaBVLMmgWR0CnTSFYMfA9dX2UKGgGaAloD0MI8u1dg740BMCUhpRSlGgVSzJoFkdAp0zlVghKUXV9lChoBmgJaA9DCHmUSnhC7/q/lIaUUpRoFUsyaBZHQKdPX6wdKdx1fZQoaAZoCWgPQwjNIamFkon+v5SGlFKUaBVLMmgWR0CnTw0+kgwHdX2UKGgGaAloD0MI1LmilBBMCcCUhpRSlGgVSzJoFkdAp07Q0hvBJ3V9lChoBmgJaA9DCBo2yvrN9BDAlIaUUpRoFUsyaBZHQKdOlPSDyvt1fZQoaAZoCWgPQwjPMSB7vXv9v5SGlFKUaBVLMmgWR0CnUPUQbuMNdX2UKGgGaAloD0MItvepKjRQ/7+UhpRSlGgVSzJoFkdAp1CirksBhnV9lChoBmgJaA9DCFzJjo1A/Pq/lIaUUpRoFUsyaBZHQKdQZx7RfF91fZQoaAZoCWgPQwj/klSmmCMCwJSGlFKUaBVLMmgWR0CnUCrqD9OzdX2UKGgGaAloD0MITweynlp9/b+UhpRSlGgVSzJoFkdAp1JURWcSXnV9lChoBmgJaA9DCCFblq/LsP+/lIaUUpRoFUsyaBZHQKdSASfUWmB1fZQoaAZoCWgPQwgx0SAFTyEEwJSGlFKUaBVLMmgWR0CnUcS3CsOodX2UKGgGaAloD0MIdOygEtcRA8CUhpRSlGgVSzJoFkdAp1GHNFBppXV9lChoBmgJaA9DCKOSOgFNpAjAlIaUUpRoFUsyaBZHQKdTU0j1PFh1fZQoaAZoCWgPQwjSAUnYt9P3v5SGlFKUaBVLMmgWR0CnUwBHTZxrdX2UKGgGaAloD0MIQBTMmII1/L+UhpRSlGgVSzJoFkdAp1LDFbVz63V9lChoBmgJaA9DCBAIdCZt6gnAlIaUUpRoFUsyaBZHQKdShevZAY51fZQoaAZoCWgPQwjk2lAxzp//v5SGlFKUaBVLMmgWR0CnVEbdi2DydX2UKGgGaAloD0MIqg1ORL/2AsCUhpRSlGgVSzJoFkdAp1Pz/4qPO3V9lChoBmgJaA9DCO+OjNXm3wPAlIaUUpRoFUsyaBZHQKdTtrM1TBJ1fZQoaAZoCWgPQwi/DwcJUb7+v5SGlFKUaBVLMmgWR0CnU3lOwgTzdX2UKGgGaAloD0MI2scKfhsCAcCUhpRSlGgVSzJoFkdAp1VP5BTn73V9lChoBmgJaA9DCBuBeF2/gArAlIaUUpRoFUsyaBZHQKdU/Ssr/bV1fZQoaAZoCWgPQwj8VYDvNl8WwJSGlFKUaBVLMmgWR0CnVMBIOH32dX2UKGgGaAloD0MINdHno4yYB8CUhpRSlGgVSzJoFkdAp1SDBl+VknV9lChoBmgJaA9DCDi/YaJBCgjAlIaUUpRoFUsyaBZHQKdWc+6iCat1fZQoaAZoCWgPQwgBbECEuFIFwJSGlFKUaBVLMmgWR0CnViEWIoE0dX2UKGgGaAloD0MITUwXYvXnA8CUhpRSlGgVSzJoFkdAp1XkwWWQfnV9lChoBmgJaA9DCPRSsTGvAwXAlIaUUpRoFUsyaBZHQKdVqBMBZIR1fZQoaAZoCWgPQwgAdQMF3okQwJSGlFKUaBVLMmgWR0CnV3WgnMMadX2UKGgGaAloD0MIaF2j5UAPA8CUhpRSlGgVSzJoFkdAp1cjEvTPSnV9lChoBmgJaA9DCOQs7GmH//2/lIaUUpRoFUsyaBZHQKdW5gSeyzJ1fZQoaAZoCWgPQwiXAz3UtmEEwJSGlFKUaBVLMmgWR0CnVqjD8+A3dX2UKGgGaAloD0MIByeiX1s/+b+UhpRSlGgVSzJoFkdAp1h1mthd+3V9lChoBmgJaA9DCBIWFXE6yQDAlIaUUpRoFUsyaBZHQKdYIqQzUI91fZQoaAZoCWgPQwgcCp+tg0P7v5SGlFKUaBVLMmgWR0CnV+V2aDwpdX2UKGgGaAloD0MI1UFeDyaFBMCUhpRSlGgVSzJoFkdAp1eoEfT1CnV9lChoBmgJaA9DCKimJOtwNP2/lIaUUpRoFUsyaBZHQKdZibWmP5p1fZQoaAZoCWgPQwjwT6kSZR8QwJSGlFKUaBVLMmgWR0CnWTb4zrNXdX2UKGgGaAloD0MIBd1e0hjtBsCUhpRSlGgVSzJoFkdAp1j6Cxu89XV9lChoBmgJaA9DCO+P96qV6QPAlIaUUpRoFUsyaBZHQKdYvJJ5E+h1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (576 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -2.620829583425075, "std_reward": 1.1612136845580103, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-15T19:45:35.398216"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3c9453393c852ee99112674dc4d97e0bc6cadf679419bb75bc97b28758a05408
|
3 |
+
size 3056
|