objects76 commited on
Commit
08b2f5e
1 Parent(s): 9e90af2

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +117 -198
README.md CHANGED
@@ -1,199 +1,118 @@
1
- ---
2
- library_name: transformers
3
- tags: []
4
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
+ # Qwen2-1.5B-Finetuned(0812)
2
+
3
+ ## Training details
4
+ datasets:
5
+ <pre>
6
+ - alpaca-gpt4_cleaned-qwen2-train.jsonl
7
+ - alpaca-gpt4_cleaned-qwen2-val.jsonl
8
+ - xlam-dataset-60k-qwen2-train.jsonl
9
+ - xlam-dataset-60k-qwen2-val.jsonl
10
+ * 9/1 train/eval ratio.
11
+ </pre>
12
+
13
+ ## Quickstart
14
+
15
+ ### utils for user content.
16
+ ```python
17
+ xlam_system = (
18
+ "You are an AI assistant for function calling. "
19
+ "For politically sensitive questions, security and privacy issues, "
20
+ "and other non-computer science questions, you will refuse to answer"
21
+ )
22
+
23
+ def to_xlam_tools(tools:list|dict):
24
+ if not isinstance(tools, list): tools = [tools]
25
+ xlam_tools = []
26
+ for tool in tools:
27
+ assert isinstance(tool, dict)
28
+ xlam_tools.append( {
29
+ "name": tools["name"],
30
+ "description": tools["description"],
31
+ "parameters": {k: v for k, v in tools["parameters"].get("properties", {}).items()}
32
+ })
33
+ return xlam_tools
34
+
35
+ TASK_INSTRUCTION = '''You are an expert in composing functions. You are given a question and a set of possible functions.
36
+ Based on the question, you will need to make one or more function/tool calls to achieve the purpose.
37
+ If none of the functions can be used, point it out and refuse to answer.
38
+ If the given question lacks the parameters required by the function, fill the parameters as None.'''
39
+
40
+ FORMAT_INSTRUCTION = '''The output MUST strictly adhere to the following JSON format, and NO other text MUST be included.
41
+ The example format is as follows. Please make sure the parameter type is correct. If no function call is needed, please make tool_calls an empty list '[]'.
42
+ ```
43
+ { "tool_calls": [
44
+ {"name": "func_name1", "arguments": {"argument1": "value1", "argument2": "value2"}},
45
+ ... (more tool calls as required)
46
+ ] }
47
+ ```
48
+ '''
49
+ ```
50
+
51
+ ### inference
52
+ ```python
53
+ user_msg = '''<instruction>
54
+ You are an expert in composing functions. You are given a question and a set of possible functions.
55
+ Based on the question, you will need to make one or more function/tool calls to achieve the purpose.
56
+ If none of the functions can be used, point it out and refuse to answer.
57
+ If the given question lacks the parameters required by the function, fill the parameters as None.
58
+ </instruction>
59
+
60
+ <available tools>
61
+ [{"name": "messages_from_telegram_channel", "description": "Fetches the last 10 messages or a specific message from a given public Telegram channel.", "parameters": {"channel": {"description": "The @username of the public Telegram channel.", "type": "str", "default": "telegram"}, "idmessage": {"description": "The ID of a specific message to retrieve. If not provided, the function will return the last 10 messages.", "type": "str, optional", "default": ""}}}, {"name": "shopify", "description": "Checks the availability of a given username on Shopify using the Toolbench RapidAPI.", "parameters": {"username": {"description": "The username to check for availability on Shopify.", "type": "str", "default": "username"}}}, {"name": "generate_a_face", "description": "Generates a face image using an AI service and returns the result as a JSON object or text. It utilizes the Toolbench RapidAPI service.", "parameters": {"ai": {"description": "The AI model identifier to be used for face generation.", "type": "str", "default": "1"}}}]
62
+ </available tools>
63
+
64
+ <tool format>
65
+ The output MUST strictly adhere to the following JSON format, and NO other text MUST be included.
66
+ The example format is as follows. Please make sure the parameter type is correct. If no function call is needed, please make tool_calls an empty list '[]'.
67
+ ```
68
+ { "tool_calls": [
69
+ {"name": "func_name1", "arguments": {"argument1": "value1", "argument2": "value2"}},
70
+ ... (more tool calls as required)
71
+ ] }
72
+ ```
73
+ </tool format>
74
+
75
+ <query>
76
+ Check if the username 'ShopMaster123' is available on Shopify.
77
+ </query>'''
78
+
79
+ messages = [dict(role='user', content=user_msg)]
80
+ label = { "tool_calls": [{"name": "shopify", "arguments": {"username": "ShopMaster123"}}] }
81
+ ```
82
+
83
+ ```python
84
+ from transformers import AutoModelForCausalLM, AutoTokenizer
85
+
86
+ tokenizer = AutoTokenizer.from_pretrained(
87
+ "objects76/qwen2-xlam", trust_remote_code=True)
88
+
89
+ model = AutoModelForCausalLM.from_pretrained(
90
+ "objects76/qwen2-xlam", trust_remote_code=True,
91
+ torch_dtype="auto",
92
+ device_map="cuda",
93
+ )
94
+ model.config.use_cache = True
95
+ model.eval()
96
+
97
+ input_ids = tokenizer.apply_chat_template(
98
+ messages,
99
+ tokenize=True,
100
+ add_generation_prompt=True,
101
+ max_length=tokenizer.model_max_length,
102
+ padding=False, truncation=True,
103
+ return_tensors='pt',
104
+ ).to(model.device)
105
+
106
+ outputs = model.generate(
107
+ input_ids = input_ids, # attention_mask=attention_mask,
108
+ max_new_tokens=1024,
109
+ eos_token_id=tokenizer.eos_token_id,
110
+ pad_token_id=tokenizer.pad_token_id,
111
+ # do_sample=True, temperature=0.01, top_p= 0.01,
112
+ use_cache=True)
113
+
114
+ response = tokenizer.decode(outputs[0, input_ids.shape[-1]:], skip_special_tokens=True)
115
+ print('response=', response)
116
+ print('label=', label)
117
+ ```
118