Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,199 +1,118 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
# Model Card for Model ID
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
## Model Details
|
13 |
-
|
14 |
-
### Model Description
|
15 |
-
|
16 |
-
<!-- Provide a longer summary of what this model is. -->
|
17 |
-
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
-
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
+
# Qwen2-1.5B-Finetuned(0812)
|
2 |
+
|
3 |
+
## Training details
|
4 |
+
datasets:
|
5 |
+
<pre>
|
6 |
+
- alpaca-gpt4_cleaned-qwen2-train.jsonl
|
7 |
+
- alpaca-gpt4_cleaned-qwen2-val.jsonl
|
8 |
+
- xlam-dataset-60k-qwen2-train.jsonl
|
9 |
+
- xlam-dataset-60k-qwen2-val.jsonl
|
10 |
+
* 9/1 train/eval ratio.
|
11 |
+
</pre>
|
12 |
+
|
13 |
+
## Quickstart
|
14 |
+
|
15 |
+
### utils for user content.
|
16 |
+
```python
|
17 |
+
xlam_system = (
|
18 |
+
"You are an AI assistant for function calling. "
|
19 |
+
"For politically sensitive questions, security and privacy issues, "
|
20 |
+
"and other non-computer science questions, you will refuse to answer"
|
21 |
+
)
|
22 |
+
|
23 |
+
def to_xlam_tools(tools:list|dict):
|
24 |
+
if not isinstance(tools, list): tools = [tools]
|
25 |
+
xlam_tools = []
|
26 |
+
for tool in tools:
|
27 |
+
assert isinstance(tool, dict)
|
28 |
+
xlam_tools.append( {
|
29 |
+
"name": tools["name"],
|
30 |
+
"description": tools["description"],
|
31 |
+
"parameters": {k: v for k, v in tools["parameters"].get("properties", {}).items()}
|
32 |
+
})
|
33 |
+
return xlam_tools
|
34 |
+
|
35 |
+
TASK_INSTRUCTION = '''You are an expert in composing functions. You are given a question and a set of possible functions.
|
36 |
+
Based on the question, you will need to make one or more function/tool calls to achieve the purpose.
|
37 |
+
If none of the functions can be used, point it out and refuse to answer.
|
38 |
+
If the given question lacks the parameters required by the function, fill the parameters as None.'''
|
39 |
+
|
40 |
+
FORMAT_INSTRUCTION = '''The output MUST strictly adhere to the following JSON format, and NO other text MUST be included.
|
41 |
+
The example format is as follows. Please make sure the parameter type is correct. If no function call is needed, please make tool_calls an empty list '[]'.
|
42 |
+
```
|
43 |
+
{ "tool_calls": [
|
44 |
+
{"name": "func_name1", "arguments": {"argument1": "value1", "argument2": "value2"}},
|
45 |
+
... (more tool calls as required)
|
46 |
+
] }
|
47 |
+
```
|
48 |
+
'''
|
49 |
+
```
|
50 |
+
|
51 |
+
### inference
|
52 |
+
```python
|
53 |
+
user_msg = '''<instruction>
|
54 |
+
You are an expert in composing functions. You are given a question and a set of possible functions.
|
55 |
+
Based on the question, you will need to make one or more function/tool calls to achieve the purpose.
|
56 |
+
If none of the functions can be used, point it out and refuse to answer.
|
57 |
+
If the given question lacks the parameters required by the function, fill the parameters as None.
|
58 |
+
</instruction>
|
59 |
+
|
60 |
+
<available tools>
|
61 |
+
[{"name": "messages_from_telegram_channel", "description": "Fetches the last 10 messages or a specific message from a given public Telegram channel.", "parameters": {"channel": {"description": "The @username of the public Telegram channel.", "type": "str", "default": "telegram"}, "idmessage": {"description": "The ID of a specific message to retrieve. If not provided, the function will return the last 10 messages.", "type": "str, optional", "default": ""}}}, {"name": "shopify", "description": "Checks the availability of a given username on Shopify using the Toolbench RapidAPI.", "parameters": {"username": {"description": "The username to check for availability on Shopify.", "type": "str", "default": "username"}}}, {"name": "generate_a_face", "description": "Generates a face image using an AI service and returns the result as a JSON object or text. It utilizes the Toolbench RapidAPI service.", "parameters": {"ai": {"description": "The AI model identifier to be used for face generation.", "type": "str", "default": "1"}}}]
|
62 |
+
</available tools>
|
63 |
+
|
64 |
+
<tool format>
|
65 |
+
The output MUST strictly adhere to the following JSON format, and NO other text MUST be included.
|
66 |
+
The example format is as follows. Please make sure the parameter type is correct. If no function call is needed, please make tool_calls an empty list '[]'.
|
67 |
+
```
|
68 |
+
{ "tool_calls": [
|
69 |
+
{"name": "func_name1", "arguments": {"argument1": "value1", "argument2": "value2"}},
|
70 |
+
... (more tool calls as required)
|
71 |
+
] }
|
72 |
+
```
|
73 |
+
</tool format>
|
74 |
+
|
75 |
+
<query>
|
76 |
+
Check if the username 'ShopMaster123' is available on Shopify.
|
77 |
+
</query>'''
|
78 |
+
|
79 |
+
messages = [dict(role='user', content=user_msg)]
|
80 |
+
label = { "tool_calls": [{"name": "shopify", "arguments": {"username": "ShopMaster123"}}] }
|
81 |
+
```
|
82 |
+
|
83 |
+
```python
|
84 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
85 |
+
|
86 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
87 |
+
"objects76/qwen2-xlam", trust_remote_code=True)
|
88 |
+
|
89 |
+
model = AutoModelForCausalLM.from_pretrained(
|
90 |
+
"objects76/qwen2-xlam", trust_remote_code=True,
|
91 |
+
torch_dtype="auto",
|
92 |
+
device_map="cuda",
|
93 |
+
)
|
94 |
+
model.config.use_cache = True
|
95 |
+
model.eval()
|
96 |
+
|
97 |
+
input_ids = tokenizer.apply_chat_template(
|
98 |
+
messages,
|
99 |
+
tokenize=True,
|
100 |
+
add_generation_prompt=True,
|
101 |
+
max_length=tokenizer.model_max_length,
|
102 |
+
padding=False, truncation=True,
|
103 |
+
return_tensors='pt',
|
104 |
+
).to(model.device)
|
105 |
+
|
106 |
+
outputs = model.generate(
|
107 |
+
input_ids = input_ids, # attention_mask=attention_mask,
|
108 |
+
max_new_tokens=1024,
|
109 |
+
eos_token_id=tokenizer.eos_token_id,
|
110 |
+
pad_token_id=tokenizer.pad_token_id,
|
111 |
+
# do_sample=True, temperature=0.01, top_p= 0.01,
|
112 |
+
use_cache=True)
|
113 |
+
|
114 |
+
response = tokenizer.decode(outputs[0, input_ids.shape[-1]:], skip_special_tokens=True)
|
115 |
+
print('response=', response)
|
116 |
+
print('label=', label)
|
117 |
+
```
|
118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|