File size: 2,162 Bytes
88b16d5 6e89cfc 88b16d5 6e89cfc e12758d 88b16d5 e12758d 88b16d5 e12758d 88b16d5 e12758d 88b16d5 e12758d 88b16d5 e12758d 88b16d5 6e89cfc e12758d 6e89cfc 88b16d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
tags:
- generated_from_trainer
datasets:
- cnn_dailymail
metrics:
- rouge
model-index:
- name: pegasus-newsroom-cnn_full-adafactor-bs6
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: cnn_dailymail
type: cnn_dailymail
args: 3.0.0
metrics:
- name: Rouge1
type: rouge
value: 44.1026
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# pegasus-newsroom-cnn_full-adafactor-bs6
This model is a fine-tuned version of [oMateos2020/pegasus-newsroom-cnn_full-adafactor-bs6](https://huggingface.co/oMateos2020/pegasus-newsroom-cnn_full-adafactor-bs6) on the cnn_dailymail dataset.
It achieves the following results on the evaluation set:
- Loss: 2.8671
- Rouge1: 44.1026
- Rouge2: 21.4261
- Rougel: 31.2033
- Rougelsum: 41.0324
- Gen Len: 72.0839
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6.4e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 64
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1
- mixed_precision_training: Native AMP
- label_smoothing_factor: 0.1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 2.9343 | 0.5 | 560 | 2.8733 | 44.1226 | 21.4087 | 31.2431 | 41.0683 | 69.367 |
| 2.9855 | 1.0 | 1120 | 2.8671 | 44.1026 | 21.4261 | 31.2033 | 41.0324 | 72.0839 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.12.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
|