File size: 2,162 Bytes
88b16d5
 
 
 
 
6e89cfc
 
88b16d5
 
6e89cfc
 
 
 
 
 
 
 
 
 
 
e12758d
88b16d5
 
 
 
 
 
 
e12758d
88b16d5
e12758d
 
 
 
 
 
88b16d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e12758d
 
 
88b16d5
e12758d
 
88b16d5
 
e12758d
88b16d5
 
 
 
6e89cfc
 
 
 
e12758d
 
6e89cfc
 
88b16d5
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
tags:
- generated_from_trainer
datasets:
- cnn_dailymail
metrics:
- rouge
model-index:
- name: pegasus-newsroom-cnn_full-adafactor-bs6
  results:
  - task:
      name: Sequence-to-sequence Language Modeling
      type: text2text-generation
    dataset:
      name: cnn_dailymail
      type: cnn_dailymail
      args: 3.0.0
    metrics:
    - name: Rouge1
      type: rouge
      value: 44.1026
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# pegasus-newsroom-cnn_full-adafactor-bs6

This model is a fine-tuned version of [oMateos2020/pegasus-newsroom-cnn_full-adafactor-bs6](https://huggingface.co/oMateos2020/pegasus-newsroom-cnn_full-adafactor-bs6) on the cnn_dailymail dataset.
It achieves the following results on the evaluation set:
- Loss: 2.8671
- Rouge1: 44.1026
- Rouge2: 21.4261
- Rougel: 31.2033
- Rougelsum: 41.0324
- Gen Len: 72.0839

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6.4e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 64
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1
- mixed_precision_training: Native AMP
- label_smoothing_factor: 0.1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 2.9343        | 0.5   | 560  | 2.8733          | 44.1226 | 21.4087 | 31.2431 | 41.0683   | 69.367  |
| 2.9855        | 1.0   | 1120 | 2.8671          | 44.1026 | 21.4261 | 31.2033 | 41.0324   | 72.0839 |


### Framework versions

- Transformers 4.20.1
- Pytorch 1.12.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1