oMateos2020
commited on
Commit
·
3b938dc
1
Parent(s):
d8bb6f5
update model card README.md
Browse files
README.md
CHANGED
@@ -1,12 +1,24 @@
|
|
1 |
---
|
2 |
-
license: apache-2.0
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
datasets:
|
6 |
- xsum
|
|
|
|
|
7 |
model-index:
|
8 |
- name: XSum_t5-small_800_adafactor
|
9 |
-
results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -14,19 +26,14 @@ should probably proofread and complete it, then remove this comment. -->
|
|
14 |
|
15 |
# XSum_t5-small_800_adafactor
|
16 |
|
17 |
-
This model is a fine-tuned version of [
|
18 |
It achieves the following results on the evaluation set:
|
19 |
-
-
|
20 |
-
-
|
21 |
-
-
|
22 |
-
-
|
23 |
-
-
|
24 |
-
-
|
25 |
-
- eval_runtime: 547.8236
|
26 |
-
- eval_samples_per_second: 20.685
|
27 |
-
- eval_steps_per_second: 0.863
|
28 |
-
- epoch: 1.56
|
29 |
-
- step: 13250
|
30 |
|
31 |
## Model description
|
32 |
|
@@ -45,15 +52,53 @@ More information needed
|
|
45 |
### Training hyperparameters
|
46 |
|
47 |
The following hyperparameters were used during training:
|
48 |
-
- learning_rate: 0.
|
49 |
-
- train_batch_size:
|
50 |
-
- eval_batch_size:
|
51 |
- seed: 42
|
52 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
53 |
- lr_scheduler_type: linear
|
54 |
- num_epochs: 2
|
55 |
- mixed_precision_training: Native AMP
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
### Framework versions
|
58 |
|
59 |
- Transformers 4.20.1
|
|
|
1 |
---
|
|
|
2 |
tags:
|
3 |
- generated_from_trainer
|
4 |
datasets:
|
5 |
- xsum
|
6 |
+
metrics:
|
7 |
+
- rouge
|
8 |
model-index:
|
9 |
- name: XSum_t5-small_800_adafactor
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
name: Sequence-to-sequence Language Modeling
|
13 |
+
type: text2text-generation
|
14 |
+
dataset:
|
15 |
+
name: xsum
|
16 |
+
type: xsum
|
17 |
+
args: default
|
18 |
+
metrics:
|
19 |
+
- name: Rouge1
|
20 |
+
type: rouge
|
21 |
+
value: 33.022
|
22 |
---
|
23 |
|
24 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
26 |
|
27 |
# XSum_t5-small_800_adafactor
|
28 |
|
29 |
+
This model is a fine-tuned version of [/content/XSum_t5-small_800_adafactor/checkpoint-11000](https://huggingface.co//content/XSum_t5-small_800_adafactor/checkpoint-11000) on the xsum dataset.
|
30 |
It achieves the following results on the evaluation set:
|
31 |
+
- Loss: 2.1714
|
32 |
+
- Rouge1: 33.022
|
33 |
+
- Rouge2: 11.9979
|
34 |
+
- Rougel: 26.7476
|
35 |
+
- Rougelsum: 26.7402
|
36 |
+
- Gen Len: 18.7543
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
## Model description
|
39 |
|
|
|
52 |
### Training hyperparameters
|
53 |
|
54 |
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 0.0001
|
56 |
+
- train_batch_size: 25
|
57 |
+
- eval_batch_size: 25
|
58 |
- seed: 42
|
59 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
- lr_scheduler_type: linear
|
61 |
- num_epochs: 2
|
62 |
- mixed_precision_training: Native AMP
|
63 |
|
64 |
+
### Training results
|
65 |
+
|
66 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|
67 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
|
68 |
+
| 2.3404 | 0.01 | 100 | 2.2058 | 32.4826 | 11.5807 | 26.2716 | 26.2611 | 18.7842 |
|
69 |
+
| 2.3194 | 0.02 | 200 | 2.2028 | 32.6393 | 11.661 | 26.372 | 26.3643 | 18.788 |
|
70 |
+
| 2.3247 | 0.04 | 300 | 2.1999 | 32.6792 | 11.6985 | 26.3876 | 26.3786 | 18.7354 |
|
71 |
+
| 2.3276 | 0.05 | 400 | 2.1979 | 32.6668 | 11.7272 | 26.3964 | 26.3907 | 18.7957 |
|
72 |
+
| 2.317 | 0.06 | 500 | 2.1957 | 32.8267 | 11.8165 | 26.5075 | 26.4997 | 18.7543 |
|
73 |
+
| 2.3214 | 0.07 | 600 | 2.1942 | 32.8319 | 11.8064 | 26.5428 | 26.5448 | 18.7693 |
|
74 |
+
| 2.3014 | 0.09 | 700 | 2.1931 | 32.7136 | 11.7334 | 26.4958 | 26.486 | 18.7759 |
|
75 |
+
| 2.3294 | 0.1 | 800 | 2.1902 | 32.6818 | 11.7684 | 26.4314 | 26.4242 | 18.785 |
|
76 |
+
| 2.299 | 0.11 | 900 | 2.1914 | 32.672 | 11.7606 | 26.4475 | 26.4367 | 18.7853 |
|
77 |
+
| 2.3009 | 0.12 | 1000 | 2.1900 | 32.7816 | 11.7958 | 26.5167 | 26.5099 | 18.7685 |
|
78 |
+
| 2.2913 | 0.13 | 1100 | 2.1885 | 32.6438 | 11.7398 | 26.4077 | 26.4051 | 18.7742 |
|
79 |
+
| 2.293 | 0.15 | 1200 | 2.1854 | 32.8228 | 11.841 | 26.548 | 26.5415 | 18.7899 |
|
80 |
+
| 2.2857 | 0.16 | 1300 | 2.1853 | 32.7118 | 11.7439 | 26.4989 | 26.4941 | 18.7998 |
|
81 |
+
| 2.2921 | 0.17 | 1400 | 2.1832 | 32.6705 | 11.7333 | 26.4076 | 26.4082 | 18.8017 |
|
82 |
+
| 2.3074 | 0.18 | 1500 | 2.1827 | 32.7543 | 11.7787 | 26.4904 | 26.4923 | 18.7827 |
|
83 |
+
| 2.3044 | 0.2 | 1600 | 2.1806 | 32.8573 | 11.8672 | 26.5655 | 26.5619 | 18.8097 |
|
84 |
+
| 2.2922 | 0.21 | 1700 | 2.1819 | 32.8394 | 11.8158 | 26.5523 | 26.5467 | 18.7891 |
|
85 |
+
| 2.2901 | 0.22 | 1800 | 2.1803 | 32.7219 | 11.7493 | 26.4644 | 26.4572 | 18.7882 |
|
86 |
+
| 2.286 | 0.23 | 1900 | 2.1790 | 32.7474 | 11.852 | 26.5078 | 26.5014 | 18.7699 |
|
87 |
+
| 2.298 | 0.25 | 2000 | 2.1781 | 32.8662 | 11.8878 | 26.618 | 26.6174 | 18.7979 |
|
88 |
+
| 2.2787 | 0.26 | 2100 | 2.1775 | 32.9621 | 11.9521 | 26.6955 | 26.6914 | 18.7934 |
|
89 |
+
| 2.2823 | 0.27 | 2200 | 2.1777 | 33.0633 | 12.0622 | 26.7715 | 26.7597 | 18.7954 |
|
90 |
+
| 2.2889 | 0.28 | 2300 | 2.1742 | 32.9637 | 12.0154 | 26.6771 | 26.6721 | 18.7844 |
|
91 |
+
| 2.2847 | 0.29 | 2400 | 2.1774 | 32.7435 | 11.8869 | 26.5334 | 26.5306 | 18.756 |
|
92 |
+
| 2.2923 | 0.31 | 2500 | 2.1754 | 32.8437 | 11.8977 | 26.59 | 26.587 | 18.7964 |
|
93 |
+
| 2.2877 | 0.32 | 2600 | 2.1740 | 32.9137 | 11.9267 | 26.618 | 26.6046 | 18.7678 |
|
94 |
+
| 2.2976 | 0.33 | 2700 | 2.1728 | 32.9372 | 11.9048 | 26.6412 | 26.6345 | 18.7838 |
|
95 |
+
| 2.2935 | 0.34 | 2800 | 2.1719 | 32.7338 | 11.7836 | 26.5667 | 26.5629 | 18.7659 |
|
96 |
+
| 2.2622 | 0.36 | 2900 | 2.1718 | 32.9847 | 11.978 | 26.7093 | 26.7008 | 18.7627 |
|
97 |
+
| 2.2749 | 0.37 | 3000 | 2.1710 | 32.9835 | 11.9809 | 26.7034 | 26.6946 | 18.8016 |
|
98 |
+
| 2.2615 | 0.38 | 3100 | 2.1721 | 32.9343 | 11.9317 | 26.6752 | 26.6695 | 18.7689 |
|
99 |
+
| 2.2825 | 0.39 | 3200 | 2.1714 | 33.022 | 11.9979 | 26.7476 | 26.7402 | 18.7543 |
|
100 |
+
|
101 |
+
|
102 |
### Framework versions
|
103 |
|
104 |
- Transformers 4.20.1
|