File size: 11,189 Bytes
342b9e1 3a2e249 342b9e1 5683bc0 342b9e1 3b91bdf 342b9e1 5683bc0 342b9e1 5683bc0 342b9e1 7239fb0 342b9e1 d32d93a 342b9e1 fd94ddd 342b9e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
---
language:
- en
library_name: nemo
datasets:
- librispeech_asr
- fisher_corpus
- mozilla-foundation/common_voice_8_0
- National-Singapore-Corpus-Part-1
- vctk
- voxpopuli
- europarl
- multilingual_librispeech
thumbnail: null
tags:
- automatic-speech-recognition
- speech
- audio
- Transducer
- TDT
- FastConformer
- Conformer
- pytorch
- NeMo
- hf-asr-leaderboard
license: cc-by-4.0
widget:
- example_title: Librispeech sample 1
src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
- example_title: Librispeech sample 2
src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
model-index:
- name: parakeet-tdt_ctc-1.1b
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: AMI (Meetings test)
type: edinburghcstr/ami
config: ihm
split: test
args:
language: en
metrics:
- name: Test WER
type: wer
value: 15.94
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Earnings-22
type: revdotcom/earnings22
split: test
args:
language: en
metrics:
- name: Test WER
type: wer
value: 11.86
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: GigaSpeech
type: speechcolab/gigaspeech
split: test
args:
language: en
metrics:
- name: Test WER
type: wer
value: 10.19
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: LibriSpeech (clean)
type: librispeech_asr
config: other
split: test
args:
language: en
metrics:
- name: Test WER
type: wer
value: 1.82
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: LibriSpeech (other)
type: librispeech_asr
config: other
split: test
args:
language: en
metrics:
- name: Test WER
type: wer
value: 3.67
- task:
type: Automatic Speech Recognition
name: automatic-speech-recognition
dataset:
name: SPGI Speech
type: kensho/spgispeech
config: test
split: test
args:
language: en
metrics:
- name: Test WER
type: wer
value: 2.24
- task:
type: Automatic Speech Recognition
name: automatic-speech-recognition
dataset:
name: tedlium-v3
type: LIUM/tedlium
config: release1
split: test
args:
language: en
metrics:
- name: Test WER
type: wer
value: 3.87
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Vox Populi
type: facebook/voxpopuli
config: en
split: test
args:
language: en
metrics:
- name: Test WER
type: wer
value: 6.19
- task:
type: Automatic Speech Recognition
name: automatic-speech-recognition
dataset:
name: Mozilla Common Voice 9.0
type: mozilla-foundation/common_voice_9_0
config: en
split: test
args:
language: en
metrics:
- name: Test WER
type: wer
value: 8.69
metrics:
- wer
pipeline_tag: automatic-speech-recognition
---
# Parakeet TDT-CTC 1.1B PnC(en)
<style>
img {
display: inline;
}
</style>
[![Model architecture](https://img.shields.io/badge/Model_Arch-FastConformer--TDT-lightgrey#model-badge)](#model-architecture)
| [![Model size](https://img.shields.io/badge/Params-1.1B-lightgrey#model-badge)](#model-architecture)
| [![Language](https://img.shields.io/badge/Language-en-lightgrey#model-badge)](#datasets)
`parakeet-hyb-pnc-1.1b` is an ASR model that transcribes speech with Punctuations and Capitalizations of English alphabet. This model is jointly developed by [NVIDIA NeMo](https://github.com/NVIDIA/NeMo) and [Suno.ai](https://www.suno.ai/) teams.
It is an XXL version of Hybrid FastConformer [1] TDT-CTC [2] (around 1.1B parameters) model. This model has been trained with Local Attention and Global token hence this model can transcribe **11 hrs** of audio in one single pass. And for reference this model can transcibe 90mins of audio in <16 sec on A100.
See the [model architecture](#model-architecture) section and [NeMo documentation](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#fast-conformer) for complete architecture details.
## NVIDIA NeMo: Training
To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest PyTorch version.
```
pip install nemo_toolkit['all']
```
## How to Use this Model
The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
### Automatically instantiate the model
```python
import nemo.collections.asr as nemo_asr
asr_model = nemo_asr.models.ASRModel.from_pretrained(model_name="nvidia/parakeet-tdt_ctc-1.1b")
```
### Transcribing using Python
First, let's get a sample
```
wget https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav
```
Then simply do:
```
asr_model.transcribe(['2086-149220-0033.wav'])
```
### Transcribing many audio files
By default model uses TDT to transcribe the audio files, to switch decoder to use CTC, use decoding_type='ctc'
```shell
python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py
pretrained_name="nvidia/parakeet-tdt_ctc-1.1b"
audio_dir="<DIRECTORY CONTAINING AUDIO FILES>"
```
### Input
This model accepts 16000 Hz mono-channel audio (wav files) as input.
### Output
This model provides transcribed speech as a string for a given audio sample.
## Model Architecture
This model uses a Hybrid FastConformer-TDT-CTC architecture. FastConformer [1] is an optimized version of the Conformer model with 8x depthwise-separable convolutional downsampling. You may find more information on the details of FastConformer here: [Fast-Conformer Model](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#fast-conformer).
## Training
The NeMo toolkit [3] was used for finetuning this model for 20,000 steps over `parakeet-tdt-1.1` model. This model is trained with this [example script](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/asr_hybrid_transducer_ctc/speech_to_text_hybrid_rnnt_ctc_bpe.py) and this [base config](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/conf/fastconformer/hybrid_transducer_ctc/fastconformer_hybrid_transducer_ctc_bpe.yaml).
The tokenizers for these models were built using the text transcripts of the train set with this [script](https://github.com/NVIDIA/NeMo/blob/main/scripts/tokenizers/process_asr_text_tokenizer.py).
### Datasets
The model was trained on 36K hours of English speech collected and prepared by NVIDIA NeMo and Suno teams.
The training dataset consists of private subset with 27K hours of English speech plus 9k hours from the following public PnC datasets:
- Librispeech 960 hours of English speech
- Fisher Corpus
- National Speech Corpus Part 1
- VCTK
- VoxPopuli (EN)
- Europarl-ASR (EN)
- Multilingual Librispeech (MLS EN) - 2,000 hour subset
- Mozilla Common Voice (v7.0)
## Performance
The performance of Automatic Speech Recognition models is measuring using Word Error Rate. Since this dataset is trained on multiple domains and a much larger corpus, it will generally perform better at transcribing audio in general.
The following tables summarizes the performance of the available models in this collection with the Transducer decoder. Performances of the ASR models are reported in terms of Word Error Rate (WER%) with greedy decoding.
|**Version**|**Tokenizer**|**Vocabulary Size**|**AMI**|**Earnings-22**|**Giga Speech**|**LS test-clean**|**SPGI Speech**|**TEDLIUM-v3**|**Vox Populi**|**Common Voice**|
|---------|-----------------------|-----------------|---------------|---------------|------------|-----------|-----|-------|------|------|
| 1.23.0 | SentencePiece Unigram | 1024 | 15.94 | 11.86 | 10.19 | 1.82 | 3.67 | 2.24 | 3.87 | 6.19 | 8.69 |
These are greedy WER numbers without external LM. More details on evaluation can be found at [HuggingFace ASR Leaderboard](https://huggingface.co/spaces/hf-audio/open_asr_leaderboard)
## Model Fairness Evaluation
As outlined in the paper "Towards Measuring Fairness in AI: the Casual Conversations Dataset", we assessed the parakeet-tdt_ctc-1.1b model for fairness. The model was evaluated on the CausalConversations-v1 dataset, and the results are reported as follows:
### Gender Bias:
| Gender | Male | Female | N/A | Other |
| :--- | :--- | :--- | :--- | :--- |
| Num utterances | 19325 | 24532 | 926 | 33 |
| % WER | 12.81 | 10.49 | 13.88 | 23.12 |
### Age Bias:
| Age Group | (18-30) | (31-45) | (46-85) | (1-100) |
| :--- | :--- | :--- | :--- | :--- |
| Num utterances | 15956 | 14585 | 13349 | 43890 |
| % WER | 11.50 | 11.63 | 11.38 | 11.51 |
(Error rates for fairness evaluation are determined by normalizing both the reference and predicted text, similar to the methods used in the evaluations found at https://github.com/huggingface/open_asr_leaderboard.)
## NVIDIA Riva: Deployment
[NVIDIA Riva](https://developer.nvidia.com/riva), is an accelerated speech AI SDK deployable on-prem, in all clouds, multi-cloud, hybrid, on edge, and embedded.
Additionally, Riva provides:
* World-class out-of-the-box accuracy for the most common languages with model checkpoints trained on proprietary data with hundreds of thousands of GPU-compute hours
* Best in class accuracy with run-time word boosting (e.g., brand and product names) and customization of acoustic model, language model, and inverse text normalization
* Streaming speech recognition, Kubernetes compatible scaling, and enterprise-grade support
Although this model isn’t supported yet by Riva, the [list of supported models is here](https://huggingface.co/models?other=Riva).
Check out [Riva live demo](https://developer.nvidia.com/riva#demos).
## References
[1] [Fast Conformer with Linearly Scalable Attention for Efficient Speech Recognition](https://arxiv.org/abs/2305.05084)
[2] [Efficient Sequence Transduction by Jointly Predicting Tokens and Durations](https://arxiv.org/abs/2304.06795)
[3] [Google Sentencepiece Tokenizer](https://github.com/google/sentencepiece)
[4] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)
[5] [Suno.ai](https://suno.ai/)
[6] [HuggingFace ASR Leaderboard](https://huggingface.co/spaces/hf-audio/open_asr_leaderboard)
[7] [Towards Measuring Fairness in AI: the Casual Conversations Dataset](https://arxiv.org/abs/2104.02821)
## Licence
License to use this model is covered by the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/). By downloading the public and release version of the model, you accept the terms and conditions of the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/) license. |