File size: 5,700 Bytes
0042fd8 daadb6a 0042fd8 daadb6a 67fdf19 daadb6a 67fdf19 9ba1a9e 67fdf19 fdfc8b1 daadb6a 69955e1 daadb6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
---
license: llama2
library_name: nemo
language:
- en
pipeline_tag: text-generation
inference: false
fine-tuning: true
tags:
- nvidia
- steerlm
- llama2
datasets:
- nvidia/HelpSteer
- OpenAssistant/oasst1
---
# Llama2-13B-SteerLM-RM
## License
The use of this model is governed by the [Llama 2 Community License Agreement](https://ai.meta.com/llama/license/)
## Description:
Llama2-13B-SteerLM-RM is a 13 billion parameter language model (with context of up to 4,096 tokens) used as the Reward Model/Attribute Prediction Model in training [Llama2-70B-SteerLM-Chat](https://huggingface.co/nvidia/Llama2-70B-SteerLM-Chat)
Given a conversation with multiple turns between user and assistant, it rates the following attributes (between 0 and 4) for every assistant turn.
1. **Quality**: Perceived goodness of response
2. **Toxicity**: Undesirable elements such as vulgar, harmful or potentially biased response
3. **Humor**: Sense of humor within response
4. **Creativity**: Willingness to generate non-conventional response
5. **Helpfulness**: Overall helpfulness of the response to the prompt.
6. **Correctness**: Inclusion of all pertinent facts without errors.
7. **Coherence**: Consistency and clarity of expression.
8. **Complexity**: Intellectual depth required to write response (i.e. whether the response can be written by anyone with basic language competency or requires deep domain expertise).
9. **Verbosity**: Amount of detail included in the response, relative to what is asked for in the prompt.
The first four attributes are taken from the [Open Assistant](https://huggingface.co/datasets/OpenAssistant/oasst1) dataset while the others are taken from [HelpSteer](https://huggingface.co/datasets/nvidia/HelpSteer) dataset
HelpSteer Paper : [HelpSteer: Multi-attribute Helpfulness Dataset for SteerLM](http://arxiv.org/abs/2311.09528)
SteerLM Paper: [SteerLM: Attribute Conditioned SFT as an (User-Steerable) Alternative to RLHF](https://arxiv.org/abs/2310.05344)
Llama2-13B-SteerLM-RM is trained with NVIDIA NeMo, an end-to-end, cloud-native framework to build, customize, and deploy generative AI models anywhere. It includes training and inferencing frameworks, guardrailing toolkits, data curation tools, and pretrained models, offering enterprises an easy, cost-effective, and fast way to adopt generative AI.
## Usage:
You can use the model with [NeMo Aligner](https://github.com/NVIDIA/NeMo-Aligner) following [SteerLM training user guide](https://docs.nvidia.com/nemo-framework/user-guide/latest/modelalignment/steerlm.html).
This model can be useful to train a model like [Llama2-70B-SteerLM-Chat](https://huggingface.co/nvidia/Llama2-70B-SteerLM-Chat) or annotate the attributes for any conversation.
1. Spin up an inference server within the [NeMo Aligner container](https://github.com/NVIDIA/NeMo-Aligner/blob/main/Dockerfile)
```python
python /opt/NeMo-Aligner/examples/nlp/gpt/serve_reward_model.py \
rm_model_file=Llama2-13B-SteerLM-RM.nemo \
trainer.num_nodes=1 \
trainer.devices=8 \
++model.tensor_model_parallel_size=4 \
++model.pipeline_model_parallel_size=1 \
inference.micro_batch_size=2 \
inference.port=1424
```
2. Annotate data files using the served reward model. If you are seeking to reproduce training of [Llama2-70B-SteerLM-Chat](https://huggingface.co/nvidia/Llama2-70B-SteerLM-Chat), this will be the Open Assistant train/val files. Then follow the next step to train a SteerLM model based on [SteerLM training user guide](https://docs.nvidia.com/nemo-framework/user-guide/latest/modelalignment/steerlm.html#step-5-train-the-attribute-conditioned-sft-model) .
```python
python /opt/NeMo-Aligner/examples/nlp/data/steerlm/preprocess_openassistant_data.py --output_directory=data/oasst
python /opt/NeMo-Aligner/examples/nlp/data/steerlm/attribute_annotate.py \
--input-file=data/oasst/train.jsonl \
--output-file=data/oasst/train_labeled.jsonl \
--port=1424
```
3. Alternatively, this can be any conversational data file (in .jsonl) in the following format, where each line looks like
```json
{
"conversations": [
{"value": <user_turn_1>, "from": "User", "label": None},
{"value": <assistant_turn_1>, "from": "Assistant", "label": <formatted_label_1>},
{"value": <user_turn_2>, "from": "User", "label": None},
{"value": <assistant_turn_2>, "from": "Assistant", "label": <formatted_label_2>},
],
"mask": "User"
}
```
Ideally, each ```<formatted_label_n>``` refers to the ground truth label for the assistant turn but if they are not available, we can also use ```quality:4,toxicity:0,humor:0,creativity:0,helpfulness:4,correctness:4,coherence:4,complexity:4,verbosity:4```
## Contact
E-Mail: [Zhilin Wang](mailto:[email protected])
## Citation
If you find this dataset useful, please cite the following works
```bibtex
@misc{wang2023helpsteer,
title={HelpSteer: Multi-attribute Helpfulness Dataset for SteerLM},
author={Zhilin Wang and Yi Dong and Jiaqi Zeng and Virginia Adams and Makesh Narsimhan Sreedhar and Daniel Egert and Olivier Delalleau and Jane Polak Scowcroft and Neel Kant and Aidan Swope and Oleksii Kuchaiev},
year={2023},
eprint={2311.09528},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```bibtex
@misc{dong2023steerlm,
title={SteerLM: Attribute Conditioned SFT as an (User-Steerable) Alternative to RLHF},
author={Yi Dong and Zhilin Wang and Makesh Narsimhan Sreedhar and Xianchao Wu and Oleksii Kuchaiev},
year={2023},
eprint={2310.05344},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|