File size: 1,092 Bytes
4cfb82d
 
a6cf5eb
 
 
0149d84
 
 
 
 
4cfb82d
a6cf5eb
 
 
 
0149d84
a6cf5eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
---
license: mit
language:
- en
pipeline_tag: text-classification
tags:
- sentiment-analysis
- text-classification
- generic
- sentiment-classification
---
Usage:

## Model

Base version of e5-v2 finetunned on an annotated subset of C4 (Numind/C4_sentiment-analysis). This model provide generic embedding for sentiment analysis. 

## Usage

Below is an example to encode text and get embedding.

```python
import torch.nn.functional as F

from torch import Tensor
from transformers import AutoTokenizer, AutoModel


model = AutoModel.from_pretrained("Numind/e5-base-SA")
tokenizer = AutoTokenizer.from_pretrained("Numind/e5-base-SA")
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
model.to(device)

size = 256
text = "This movie is amazing"

encoding = tokenizer(
    text,
    truncation=True, 
    padding='max_length', 
    max_length= size,
)

emb = model(
      torch.reshape(torch.tensor(encoding.input_ids),(1,len(encoding.input_ids))).to(device),output_hidden_states=True
).hidden_states[-1].cpu().detach()

embText = torch.mean(emb,axis = 1)

```