File size: 6,313 Bytes
955e3ec
 
b5f53bc
 
955e3ec
b5f53bc
955e3ec
b5f53bc
955e3ec
b5f53bc
955e3ec
b5f53bc
955e3ec
b5f53bc
955e3ec
b5f53bc
955e3ec
8521c8e
b5f53bc
955e3ec
b5f53bc
955e3ec
b5f53bc
955e3ec
b5f53bc
955e3ec
058962f
955e3ec
b5f53bc
 
 
 
955e3ec
b5f53bc
955e3ec
c76e234
 
 
 
 
 
 
 
 
 
 
 
955e3ec
b5f53bc
955e3ec
b5f53bc
955e3ec
b5f53bc
 
 
955e3ec
b5f53bc
 
 
 
 
 
 
 
 
955e3ec
b5f53bc
 
955e3ec
b5f53bc
955e3ec
8521c8e
b5f53bc
 
 
955e3ec
b5f53bc
 
 
 
 
 
 
 
 
 
 
955e3ec
b5f53bc
 
 
 
 
 
 
 
 
 
 
 
955e3ec
b5f53bc
 
955e3ec
3ab7934
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5f53bc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
---

license: mit
language:

- multilingual

tags:

- nlp

base_model: Qwen/Qwen2.5-0.5B

---

# NuExtract-tiny-v1.5 by NuMind 🔥

NuExtract-tiny-v1.5 is a fine-tuning of [Qwen/Qwen2.5-0.5B](https://huggingface.co/Qwen/Qwen2.5-0.5B), trained on a private high-quality dataset for structured information extraction. It supports long documents and several languages (English, French, Spanish, German, Portuguese, and Italian).
To use the model, provide an input text and a JSON template describing the information you need to extract.

Note: This model is trained to prioritize pure extraction, so in most cases all text generated by the model is present as is in the original text.

Try it here: <space-link>

We also provide a 3.8B version which is based on Phi-3.5-mini-instruct: [NuExtract-v1.5](https://huggingface.co/numind/NuExtract-v1.5)

**Check out other models by NuMind:**

- NuExtract Version 1 Models: [0.5B](https://huggingface.co/numind/NuExtract-tiny), [3.8B](https://huggingface.co/numind/NuExtract), [7B](https://huggingface.co/numind/NuExtract-large)
- SOTA Zero-shot NER Model [NuNER Zero](https://huggingface.co/numind/NuNER_Zero)
- SOTA Multilingual Entity Recognition Foundation Model: [link](https://huggingface.co/numind/entity-recognition-multilingual-general-sota-v1)
- SOTA Sentiment Analysis Foundation Model: [English](https://huggingface.co/numind/generic-sentiment-v1), [Multilingual](https://huggingface.co/numind/generic-sentiment-multi-v1)

## Benchmark

Zero-shot performance:

<p align="left">
<img src="english_bench.pdf" style="width: 600; height: auto;">
</p>

Few-shot fine-tuning:

<p align="left">
<img src="finetuned_gains.pdf" style="width: 750; height: auto;">
</p>


## Usage

To use the model:

```python
import json
from transformers import AutoModelForCausalLM, AutoTokenizer

def predict_NuExtract(model, tokenizer, texts, template, batch_size=1, max_length=10_000, max_new_tokens=4_000):
    template = json.dumps(json.loads(template), indent=4)
    prompts = [f"""<|input|>\n### Template:\n{template}\n### Text:\n{text}\n\n<|output|>""" for text in texts]
    
    outputs = []
    with torch.no_grad():
        for i in range(0, len(prompts), batch_size):
            batch_prompts = prompts[i:i+batch_size]
            batch_encodings = tokenizer(batch_prompts, return_tensors="pt", truncation=True, padding=True, max_length=max_length).to(model.device)

            pred_ids = model.generate(**batch_encodings, max_new_tokens=max_new_tokens)
            outputs += tokenizer.batch_decode(pred_ids, skip_special_tokens=True)

    return [output.split("<|output|>")[1] for output in outputs]

model_name = "numind/NuExtract-tiny-v1.5"
device = "cuda"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, trust_remote_code=True).to(device).eval()
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)

text = """We introduce Mistral 7B, a 7–billion-parameter language model engineered for
superior performance and efficiency. Mistral 7B outperforms the best open 13B
model (Llama 2) across all evaluated benchmarks, and the best released 34B
model (Llama 1) in reasoning, mathematics, and code generation. Our model
leverages grouped-query attention (GQA) for faster inference, coupled with sliding
window attention (SWA) to effectively handle sequences of arbitrary length with a
reduced inference cost. We also provide a model fine-tuned to follow instructions,
Mistral 7B – Instruct, that surpasses Llama 2 13B – chat model both on human and
automated benchmarks. Our models are released under the Apache 2.0 license.
Code: <https://github.com/mistralai/mistral-src>
Webpage: <https://mistral.ai/news/announcing-mistral-7b/>"""

template = """{
    "Model": {
        "Name": "",
        "Number of parameters": "",
        "Number of max token": "",
        "Architecture": []
    },
    "Usage": {
        "Use case": [],
        "Licence": ""
    }
}"""

prediction = predict_NuExtract(model, tokenizer, [text], template)[0]
print(prediction)

```

Sliding window prompting:

```python
import json

MAX_INPUT_SIZE = 20_000
MAX_NEW_TOKENS = 6000

def clean_json_text(text):
    text = text.strip()
    text = text.replace("\#", "#").replace("\&", "&")
    return text

def predict_chunk(text, template, current, model, tokenizer):
    current = clean_json_text(current)

    input_llm =  f"<|input|>\n### Template:\n{template}\n### Current:\n{current}\n### Text:\n{text}\n\n<|output|>" + "{"
    input_ids = tokenizer(input_llm, return_tensors="pt", truncation=True, max_length=MAX_INPUT_SIZE).to("cuda")
    output = tokenizer.decode(model.generate(**input_ids, max_new_tokens=MAX_NEW_TOKENS)[0], skip_special_tokens=True)

    return clean_json_text(output.split("<|output|>")[1])

def split_document(document, window_size, overlap):
    tokens = tokenizer.tokenize(document)
    print(f"\tLength of document: {len(tokens)} tokens")

    chunks = []
    if len(tokens) > window_size:
        for i in range(0, len(tokens), window_size-overlap):
            print(f"\t{i} to {i + len(tokens[i:i + window_size])}")
            chunk = tokenizer.convert_tokens_to_string(tokens[i:i + window_size])
            chunks.append(chunk)

            if i + len(tokens[i:i + window_size]) >= len(tokens):
                break
    else:
        chunks.append(document)
    print(f"\tSplit into {len(chunks)} chunks")

    return chunks

def handle_broken_output(pred, prev):
    try:
        if all([(v in ["", []]) for v in json.loads(pred).values()]):
            # if empty json, return previous
            pred = prev
    except:
        # if broken json, return previous
        pred = prev

    return pred

def sliding_window_prediction(text, template, model, tokenizer, window_size=4000, overlap=128):
    # split text into chunks of n tokens
    tokens = tokenizer.tokenize(text)
    chunks = split_document(text, window_size, overlap)

    # iterate over text chunks
    prev = template
    for i, chunk in enumerate(chunks):
        print(f"Processing chunk {i}...")
        pred = predict_chunk(chunk, template, prev, model, tokenizer)

        # handle broken output
        pred = handle_broken_output(pred, prev)
            
        # iterate
        prev = pred

    return pred
```