nsanghi commited on
Commit
7efc480
1 Parent(s): 16d49ab

Push to Hub

Browse files
README.md CHANGED
@@ -16,69 +16,22 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -638.18 +/- 102.53
20
  name: mean_reward
21
  verified: false
22
  ---
23
 
24
  # **DQN** Agent playing **LunarLander-v2**
25
  This is a trained model of a **DQN** agent playing **LunarLander-v2**
26
- using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
- and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
 
29
- The RL Zoo is a training framework for Stable Baselines3
30
- reinforcement learning agents,
31
- with hyperparameter optimization and pre-trained agents included.
32
 
33
- ## Usage (with SB3 RL Zoo)
34
 
35
- RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
- SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
- SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
-
39
- Install the RL Zoo (with SB3 and SB3-Contrib):
40
- ```bash
41
- pip install rl_zoo3
42
- ```
43
-
44
- ```
45
- # Download model and save it into the logs/ folder
46
- python -m rl_zoo3.load_from_hub --algo dqn --env LunarLander-v2 -orga nsanghi -f logs/
47
- python -m rl_zoo3.enjoy --algo dqn --env LunarLander-v2 -f logs/
48
- ```
49
-
50
- If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
- ```
52
- python -m rl_zoo3.load_from_hub --algo dqn --env LunarLander-v2 -orga nsanghi -f logs/
53
- python -m rl_zoo3.enjoy --algo dqn --env LunarLander-v2 -f logs/
54
- ```
55
-
56
- ## Training (with the RL Zoo)
57
- ```
58
- python -m rl_zoo3.train --algo dqn --env LunarLander-v2 -f logs/
59
- # Upload the model and generate video (when possible)
60
- python -m rl_zoo3.push_to_hub --algo dqn --env LunarLander-v2 -f logs/ -orga nsanghi
61
- ```
62
-
63
- ## Hyperparameters
64
  ```python
65
- OrderedDict([('batch_size', 128),
66
- ('buffer_size', 50000),
67
- ('exploration_final_eps', 0.1),
68
- ('exploration_fraction', 0.12),
69
- ('gamma', 0.99),
70
- ('gradient_steps', -1),
71
- ('learning_rate', 0.00063),
72
- ('learning_starts', 0),
73
- ('n_timesteps', 100000.0),
74
- ('policy', 'MlpPolicy'),
75
- ('policy_kwargs', 'dict(net_arch=[256, 256])'),
76
- ('target_update_interval', 250),
77
- ('train_freq', 4),
78
- ('normalize', False)])
79
- ```
80
 
81
- # Environment Arguments
82
- ```python
83
- {'render_mode': 'rgb_array'}
84
  ```
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 87.35 +/- 35.51
20
  name: mean_reward
21
  verified: false
22
  ---
23
 
24
  # **DQN** Agent playing **LunarLander-v2**
25
  This is a trained model of a **DQN** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
 
27
 
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
 
30
 
 
31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
 
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
+ ...
 
 
37
  ```
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x7efd33b69310>", "_build": "<function DQNPolicy._build at 0x7efd33b693a0>", "make_q_net": "<function DQNPolicy.make_q_net at 0x7efd33b69430>", "forward": "<function DQNPolicy.forward at 0x7efd33b694c0>", "_predict": "<function DQNPolicy._predict at 0x7efd33b69550>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7efd33b695e0>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7efd33b69670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7efd33b6b0c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 100000, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1709621653573777784, "learning_rate": 0.0001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAIBR6b3lvGw/iyDjPMnrLr4dUSI8S2h8vAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAMDe6b3LuG0/iiDjPESdE77s7y48Y2h8vAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_episode_num": 614, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGYLIhhYvFqMAWyUS32MAXSUR0BN/qoQ4CIUdX2UKGgGR8B233iYLLIQaAdLdmgIR0BODDziCJ40dX2UKGgGR8BwfjviLl3haAdLbmgIR0BOGZjpcHGCdX2UKGgGR8BioZ+H8CPqaAdLTmgIR0BOJfn4fwI/dX2UKGgGR8BsnNFpfx+baAdLSGgIR0BOP7Rv3rUtdX2UKGgGR8BpOlATqSowaAdLRmgIR0BOUXyiEg4fdX2UKGgGR0AlBwSamXPaaAdLT2gIR0BOWMaCL/CJdX2UKGgGR0Akpho/RmbtaAdLQmgIR0BOX2xQizLPdX2UKGgGR8BkfMH4XXRPaAdLaWgIR0BOckQPI4lydX2UKGgGR8Bh+thE0BOpaAdLdmgIR0BOfmQ0XP7fdX2UKGgGR8B12NfMOf/WaAdLUGgIR0BOirRa5f+kdX2UKGgGR8B0Ux9F4LThaAdLcWgIR0BOmuOjqOcUdX2UKGgGR8BTJ2pQ1rIpaAdLSWgIR0BOp1Oj7ALzdX2UKGgGR8Bh0qJVKf4AaAdLaWgIR0BOuiwr1/UfdX2UKGgGR8BWz0xmCiAUaAdLm2gIR0BO0l5GBnSOdX2UKGgGR8B1KXMA3kxRaAdLXWgIR0BO3UUoKD02dX2UKGgGR8BsEhGKAJ9iaAdLVGgIR0BO58stkFwDdX2UKGgGR8B7wt5dGAkLaAdLWWgIR0BO8c/MW43FdX2UKGgGR8B0eNi1AqusaAdLZGgIR0BPvXQdCE6DdX2UKGgGR8CF1bBLPD51aAdLbWgIR0BRICcslLOBdX2UKGgGR8CKweCih37laAdLjGgIR0BTGpNTLns+dX2UKGgGR8CR2cya/h2oaAdLxWgIR0BVjnr6ciGGdX2UKGgGR8CLGeigTRICaAdLf2gIR0BXNUDMeOn3dX2UKGgGR8CJfEBbwBo3aAdLiGgIR0BZIdXko4MndX2UKGgGR8CGy4a3qiXZaAdLXWgIR0BaT7idat9ydX2UKGgGR8CSbG1rqMWHaAdL3mgIR0BdZOnQ6ZH/dX2UKGgGR8CGYm2n889waAdLiGgIR0Be8UT6BRQ8dX2UKGgGR8CAojPxhDw6aAdLWGgIR0BfyUQoTfzjdX2UKGgGR8CYA/I3zcynaAdL22gIR0BhKuszVMEidX2UKGgGR8CUORBRQ79yaAdLv2gIR0BiSXCCSRr8dX2UKGgGR8CyLUqjBVMmaAdNzAFoCEdAZNJ4i5d4V3V9lChoBkfAeJtB8x9G7WgHS0xoCEdAZWXN9H+ZPXV9lChoBkfAi8F8e8wpOWgHS7hoCEdAZrMX5WRzR3V9lChoBkfAic0FS88La2gHS4BoCEdAZ4IiRnvlVHV9lChoBkfAeZIy+pOvdWgHS5BoCEdAaH02y9mHxnV9lChoBkfAcW63WnTAnGgHS2xoCEdAaScrsByS3nV9lChoBkfAepOA3T/hl2gHTRQBaAhHQGrUsRpUPxx1fZQoaAZHwHl4TeCTUy5oB00qAWgIR0Bsja6Ymb9ZdX2UKGgGR8Blx9BlcyFgaAdLzWgIR0Bty7qOcUdrdX2UKGgGR8Biogg3cYZVaAdLyGgIR0Bubwqy4Wk8dX2UKGgGR8BEolZ5iVjaaAdN6ANoCEdAcLzhUBGQS3V9lChoBkdAVPI4rBj4H2gHTegDaAhHQHPePVmSQo11fZQoaAZHwD0UjSofjjtoB03oA2gIR0B3IXlEJBw/dX2UKGgGR8Ake0ojOcDsaAdL0mgIR0B32heOXE61dX2UKGgGR8BgYvbmEGqxaAdLuGgIR0B4epnUUfxMdX2UKGgGR8BhEFdonKGMaAdLsGgIR0B4mYToMa0hdX2UKGgGR0BvdoXEZR8/aAdNwwFoCEdAePTsyzollnV9lChoBkdAZ0lkpZwGW2gHTZUDaAhHQHqxgTM7lq91fZQoaAZHQG1UaEBbOeJoB01nAmgIR0B8H+0svqTsdX2UKGgGR8BMQIToMa0haAdN6ANoCEdAflWNSIgvDnV9lChoBkfAY33GNrCWNWgHTegDaAhHQH+aBM8HObB1fZQoaAZHwE9sT/Q0GeNoB03oA2gIR0CAiUYNRWLhdX2UKGgGR8Bym/vMKTjeaAdN6ANoCEdAgjphAv+OwXV9lChoBkfAcp2LMLWqcWgHTegDaAhHQILjHfCQ9zR1fZQoaAZHwAoOM+/xlQNoB01cAWgIR0CC9uGr0aqCdX2UKGgGR8BwAo1UEPlNaAdN6ANoCEdAg2pMPJ7swHV9lChoBkfAaywxGlQ/HGgHTegDaAhHQIQE/UWl/H51fZQoaAZHwDnPaoMrmQtoB00bAWgIR0CEJJ7WNFSbdX2UKGgGR8BgEHTuv2XcaAdN6ANoCEdAhKjfyoXKsHV9lChoBkfAYHm2ycCo0mgHTegDaAhHQIUz7/2kBS11fZQoaAZHwEUX79hqj8FoB03oA2gIR0CFnoIP9UCJdX2UKGgGR8BdCqAOJ+DwaAdN6ANoCEdAhexZowmE5HV9lChoBkfAW1YEs8PnS2gHTegDaAhHQIZRrwSamXR1fZQoaAZHQGZESIgvDgtoB02QA2gIR0CGrRQ5WBBidX2UKGgGR0BunPHim2sraAdNAQNoCEdAhw6okzGgjHV9lChoBkdAasH7cfvF32gHTdYBaAhHQIcrZgZ0jkd1fZQoaAZHP+YIFeOXE61oB03oA2gIR0CHjfC3PRiPdX2UKGgGR0Bcm82vStvGaAdNmgNoCEdAh9sU1qFh5XV9lChoBkdAZuxRBNVR12gHTb4DaAhHQIg3LB68g6l1fZQoaAZHQGdMbhegL7ZoB032AmgIR0CIZWGFBY3edX2UKGgGR0BsJmiN83MqaAdNHwNoCEdAiJlCGetjkXV9lChoBkdAYmR6hQFcIWgHTUIDaAhHQIjb+fNA1Nx1fZQoaAZHQGei7jcVQANoB02MAmgIR0CJAUnBLwnZdX2UKGgGR0BiG8neBQN1aAdN0gNoCEdAiUYjPOY6XHV9lChoBkdAZUqohIOH32gHTfkCaAhHQIl2XgFX7tR1fZQoaAZHQGp5SyUs4DNoB00mAmgIR0CJo1ovi97GdX2UKGgGR0BjZona37UHaAdNcANoCEdAigx/ZVXFLnV9lChoBkdAZPdKXfIjnmgHTXIDaAhHQIp0s83dbgV1fZQoaAZHQGfFWY4Qz1toB03MAmgIR0CKoBeWOZLJdX2UKGgGR0Bq8j1RLsa9aAdNnQJoCEdAitDSG8EmpnV9lChoBkdAamH+8XenAWgHTcICaAhHQIsCnw5NoJ11fZQoaAZHQHCwzg/C66JoB00KAmgIR0CLEbaW5YozdX2UKGgGR0BpBNNzr/sFaAdNBgNoCEdAiypnlXA/LXV9lChoBkdAZ48UFjd56mgHTU4DaAhHQItJqFK02Lp1fZQoaAZHQGyZXlbNbC9oB01yAmgIR0CLWDDw6QvIdX2UKGgGR0BksQ5aNdZ8aAdNmQNoCEdAi3QZ0jkdWHV9lChoBkdAZxH3pOerdWgHTScDaAhHQIuR5TsIE8t1fZQoaAZHwFIcxX4j8k5oB031AmgIR0CLp2RbKRuCdX2UKGgGR0BpAwAEMb3oaAdN1gJoCEdAi7m7cXWOInV9lChoBkdAZxHUQTVUdmgHTXgCaAhHQIvJetlqagF1fZQoaAZHQGX6RNZeRgZoB00EA2gIR0CL3wqdYnv2dX2UKGgGR0BpxWFnIyTIaAdNtQJoCEdAi+/K6e5Fw3V9lChoBkdAZU38CPp6hWgHTY0CaAhHQIwBP9ehPCV1fZQoaAZHQGga1tXPqs5oB032AmgIR0CMF3WCEpRXdX2UKGgGR0Bl3i2nbZezaAdN4AJoCEdAjDHCrT6SDHV9lChoBkdAZbH+WGATZmgHTccCaAhHQIxEPO8kD6p1fZQoaAZHQGjNsGgSOBFoB03kAmgIR0CMXAZaV2RrdX2UKGgGR0BxLc4HX2/SaAdNwgJoCEdAjG30qQRwqHV9lChoBkdAatyQg9vCM2gHTZECaAhHQIyCjx0+1Sh1fZQoaAZHQGhYLT6SDAdoB01SAmgIR0CMk2gow22odWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 12500, "buffer_size": 1000000, "batch_size": 32, "learning_starts": 50000, "tau": 1.0, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7efd33bba8b0>", "add": "<function ReplayBuffer.add at 0x7efd33bba940>", "sample": "<function ReplayBuffer.sample at 0x7efd33bba9d0>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7efd33bbaa60>", "_maybe_cast_dtype": "<staticmethod object at 0x7efd33bbf3d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7efd33f2d240>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.1, "exploration_fraction": 0.1, "target_update_interval": 250, "_n_calls": 100000, "max_grad_norm": 10, "exploration_rate": 0.1, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVZgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAADAvwAAwL8AAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAwD8AAMA/AACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFNbLTEuNSAgICAgICAtMS41ICAgICAgIC01LiAgICAgICAgLTUuICAgICAgICAtMy4xNDE1OTI3IC01LgogLTAuICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMS1sxLjUgICAgICAgMS41ICAgICAgIDUuICAgICAgICA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICAxLgogMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]", "low_repr": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVxgEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUaB+MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaCqKEZjVN9mFTYBBIuRRlEAkHKUAjANpbmOUihB17S3+WRffTxY2l7BoR6QDdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUigUYs6biAHVidWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV6AIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMaS9ob21lL25zYW5naGkvc2FuZGJveC9hcHJlc3MvZHJsLTJlZC92ZW52MzkvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4NDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMaS9ob21lL25zYW5naGkvc2FuZGJveC9hcHJlc3MvZHJsLTJlZC92ZW52MzkvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPxo24uscQy2FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "batch_norm_stats": [], "batch_norm_stats_target": [], "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVjAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyxkAXwAGACIAWsEchCIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAZABTAJROSwGGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIxpL2hvbWUvbnNhbmdoaS9zYW5kYm94L2FwcmVzcy9kcmwtMmVkL3ZlbnYzOS9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLcUMGAAEMAQQClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxpL2hvbWUvbnNhbmdoaS9zYW5kYm94L2FwcmVzcy9kcmwtMmVkL3ZlbnYzOS9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaB0pUpRoHSlSlIeUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoI32UfZQoaBhoDYwMX19xdWFsbmFtZV9flIwbZ2V0X2xpbmVhcl9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKGgKjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaC51jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/uZmZmZmZmoWUUpRoNkc/uZmZmZmZmoWUUpRoNkc/8AAAAAAAAIWUUpSHlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-5.15.133.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Thu Oct 5 21:02:42 UTC 2023", "Python": "3.9.18", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cpu", "GPU Enabled": "False", "Numpy": "1.26.1", "Cloudpickle": "3.0.0", "Gymnasium": "0.29.1", "OpenAI Gym": "0.26.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x7f7bc1685040>", "_build": "<function DQNPolicy._build at 0x7f7bc16850d0>", "make_q_net": "<function DQNPolicy.make_q_net at 0x7f7bc1685160>", "forward": "<function DQNPolicy.forward at 0x7f7bc16851f0>", "_predict": "<function DQNPolicy._predict at 0x7f7bc1685280>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7f7bc1685310>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7f7bc16853a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f7bc1704700>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 100000, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1709631678889401888, "learning_rate": 0.0001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAADPmhL36pw4+gBLTu/CPlb1JVMy8dA2ZOwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAALPFhL29VhA+jHgyu5fCmL0NPs68z50YPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_episode_num": 610, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVFgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFeouCf6Gg2MAWyUS1mMAXSUR0AuiLl3hXKbdX2UKGgGR0AJiD9OymhuaAdLgWgIR0AumAU+LWI5dX2UKGgGR8B02WLFXJYDaAdLX2gIR0AupZ7ojfNzdX2UKGgGR8BUIBRVIZqEaAdLQmgIR0AurLAYYR/WdX2UKGgGR8B4fmWkadc0aAdLWmgIR0Aut3HJcPe6dX2UKGgGR8BgSjCJoCdSaAdLeWgIR0AuxGViWmgrdX2UKGgGR8BbZyzHCGeuaAdLZGgIR0AuzwZwXIludX2UKGgGR8BybvLGJemfaAdLW2gIR0Au244Ia99MdX2UKGgGR8B3fbWjGkvcaAdLWWgIR0Au5UbT+ee4dX2UKGgGR8Bj+b6ciGFjaAdLdWgIR0Au9FOO801qdX2UKGgGR8BWStFnZkCnaAdLZmgIR0AvAtFKCg9NdX2UKGgGR8Bo54y/KyOaaAdLZGgIR0AvDyzXz19OdX2UKGgGR8B3O32EkB0ZaAdLTGgIR0AvF0p3HJcPdX2UKGgGR0ABDvgFX7tRaAdLWWgIR0AvIIt16mfodX2UKGgGR8BrrMmShakiaAdLUmgIR0AvKVgQYk3TdX2UKGgGR8BveSqsEJSjaAdLUWgIR0AvMvxpcophdX2UKGgGR8BaUQw9JSR9aAdLSmgIR0AvOw5eZ5RkdX2UKGgGR8BfykGRmseXaAdLXGgIR0AvSMKCxu89dX2UKGgGR8BYowSJ0nw5aAdLc2gIR0AvV7aZhKDkdX2UKGgGR8Bdx8L4N7SiaAdLZ2gIR0AvY7OmixmkdX2UKGgGR8BgtVjbzshQaAdLYGgIR0AvdJ1aGHpKdX2UKGgGR8BgUwn+hoM8aAdLTGgIR0AvhBVuJk5IdX2UKGgGR8BXly6QNkOJaAdLQ2gIR0Avj5SFXaJzdX2UKGgGR8BD95J04iosaAdLi2gIR0Avpaews5GSdX2UKGgGR8BYGnaews5GaAdLcWgIR0AvtQ+lj3EidX2UKGgGR8BiYCQT238XaAdLgmgIR0AvxtD2JzkqdX2UKGgGR8B66kFfReC1aAdLbWgIR0AwSaxHG0eEdX2UKGgGR8BfpUVvddmhaAdLPGgIR0AwVAQxvegtdX2UKGgGR8B4ytnYg7o0aAdLUGgIR0AwY8s+V1OkdX2UKGgGR8CFm6sf7rLRaAdLgWgIR0Awfe/5+H8CdX2UKGgGR8CRvuEwWWQfaAdLnmgIR0Awn3u/k/8mdX2UKGgGR8CGp/68g6ltaAdLZ2gIR0AwuA44p+c6dX2UKGgGR8CBcKIE8q4IaAdLXmgIR0AwzLQ5WBBidX2UKGgGR8CC+FschkiEaAdLdGgIR0Aw7XA/LTx5dX2UKGgGR8CB5mTDfm9yaAdLmWgIR0AxEkZ75VOsdX2UKGgGR8B9yDv6TGHYaAdLXWgIR0AxJpBX0XgtdX2UKGgGR8B6qgbOu7pWaAdLSWgIR0AxNTpgTh5xdX2UKGgGR8CCS6A80UGnaAdLaGgIR0AxVNuLrHENdX2UKGgGR8CsALEGqxTsaAdNbAFoCEdAMcUjX4CZGHV9lChoBkfAe3DV6NVBEGgHS2VoCEdAMeISUTtb93V9lChoBkfAgip6UJOWSmgHS31oCEdAMf9JnQID5nV9lChoBkfAiZS4a5wwTWgHS3ZoCEdAMhd5Qgs9S3V9lChoBkfAhNxUeMhoumgHS6FoCEdAMjtayKNyYHV9lChoBkfArP8IG0NSZWgHTZABaAhHQDKyDlHSWqt1fZQoaAZHwID88cXFcY9oB0traAhHQDLJkc0cfeV1fZQoaAZHwJPGIdZJTVFoB00XAWgIR0AzEYgaFVT8dX2UKGgGR8CNjUX8fmtAaAdNeQFoCEdAM3XHJcPe6HV9lChoBkfAhHBGViWmg2gHTR8BaAhHQDPjkbPyCnR1fZQoaAZHwITt4RK6FuhoB00JAWgIR0A0MbS7Xg+AdX2UKGgGR8B1pPQzDXOGaAdNIgJoCEdANQ/QjUutfXV9lChoBkfAaDv2icoYvWgHTegDaAhHQDdjnX/YJ3R1fZQoaAZHwHX4b/82rGRoB01jAWgIR0A33k0Jng5zdX2UKGgGR8BkPf3xnWauaAdN6ANoCEdAObhQSBbwB3V9lChoBkfAZP9AeJYT02gHS4hoCEdAOdW1hLGrCHV9lChoBkfAdKDmYSg5BGgHS7NoCEdAOf+2VmjCYXV9lChoBkfAXPgQvpQk5mgHS+JoCEdAOjTQ3PzFuXV9lChoBkfAWZh4Y77sOWgHTegDaAhHQDwyOIZZSvV1fZQoaAZHwGJZYYJmdy1oB03DAWgIR0A8xsq8UVSGdX2UKGgGR8BWO0W69TP0aAdN6ANoCEdAPnPTXrdFfHV9lChoBkfAUu72Dg62fGgHTegDaAhHQEAjWXC0ngJ1fZQoaAZHwB30jgQ6IWRoB03oA2gIR0BBP6ews5GSdX2UKGgGR8BhjnBUJfICaAdN6ANoCEdAQg8t9QXQ+nV9lChoBkfAXsjlwLmZE2gHTegDaAhHQEMS6cy31Bd1fZQoaAZHQHDn7PMSsbNoB03WAmgIR0BDmkcjqv/zdX2UKGgGR0AdTIp6QeV+aAdNiAFoCEdAQ9KZ+hGpdnV9lChoBkfAhWgDFAE+xGgHTegDaAhHQETonuRcNYt1fZQoaAZHwHsU0IC2c8VoB03oA2gIR0BFqtL127nQdX2UKGgGR8B0wl3Ux20RaAdN6ANoCEdARnHeSB9TgnV9lChoBkfAch4p6yB062gHTegDaAhHQEd7PepGWld1fZQoaAZHwGTpnQpnYg9oB03oA2gIR0BIkQDmr8zidX2UKGgGR0BLSiHIp6QeaAdN6ANoCEdASdqWzF+/g3V9lChoBkfAIZUBnzxwymgHTegDaAhHQEqpIwM6RyR1fZQoaAZHQEjscMEzO5doB03oA2gIR0BLtB19v0iAdX2UKGgGR0BVK9hiLEUCaAdN6ANoCEdATMx9w3o9tHV9lChoBkdAXESHP/rB02gHTbQDaAhHQE2h7PY4ACJ1fZQoaAZHQDXDiZOSGJxoB03oA2gIR0BOkUSh8IAwdX2UKGgGR0BjcXCAMDwIaAdNhANoCEdAT2Ejopx3mnV9lChoBkdAUqSii7Ciy2gHTegDaAhHQFApGI9C/oJ1fZQoaAZHQFk0ZrYXfqJoB03oA2gIR0BQmSWzF+/hdX2UKGgGR0BBTJhnanJlaAdN6ANoCEdAUTj1Iy0rsnV9lChoBkdAQQys6q8142gHTegDaAhHQFGuoS+QEIR1fZQoaAZHQEgv7qptJnRoB03oA2gIR0BSJZkK/mDEdX2UKGgGR0BJDaAFxGUfaAdN6ANoCEdAUpnCGetjkXV9lChoBkdAYBnmjj7yhGgHTegDaAhHQFL8/eLvTgF1fZQoaAZHQFFlY02tMf1oB03oA2gIR0BTd59NN8E3dX2UKGgGR0Bwe10r9VFQaAdNJgNoCEdAU7wNI9TxXnV9lChoBkdAVxdf2K2rn2gHTegDaAhHQFQprIYFaB91fZQoaAZHQFkgdweeWfNoB03oA2gIR0BUvwAZKnNxdX2UKGgGR0BZRTN2TxG2aAdN6ANoCEdAVVDpdKNADHV9lChoBkdAUUxNj9XLeWgHTegDaAhHQFW1kYGdI5J1fZQoaAZHQGF/fapPykNoB03oA2gIR0BWEbqyGBWgdX2UKGgGR0BYJPNeMQ2/aAdN6ANoCEdAVopTqB3A23V9lChoBkdAWYmpAD7qIWgHTegDaAhHQFcUPluFYdR1fZQoaAZHQFUTix3V091oB03oA2gIR0BXilxffGdadX2UKGgGR0A/V2Pkq+ajaAdN6ANoCEdAWAM3vQWvbHV9lChoBkdAVy/OfNA1N2gHTegDaAhHQFh/3RXwLE11fZQoaAZHQFUvvXsgMc9oB03oA2gIR0BY+611GLDRdX2UKGgGR0BlKN7ngYP5aAdN4ANoCEdAWVhljEvTPXV9lChoBkdAUZk8B+4LC2gHTegDaAhHQFnWwudwvQF1fZQoaAZHQFClRB/qgRNoB03oA2gIR0BaXiP+4smOdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 12500, "buffer_size": 1000000, "batch_size": 32, "learning_starts": 50000, "tau": 1.0, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7f7bc16db0d0>", "add": "<function ReplayBuffer.add at 0x7f7bc16db160>", "sample": "<function ReplayBuffer.sample at 0x7f7bc16db1f0>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7f7bc16db280>", "_maybe_cast_dtype": "<staticmethod object at 0x7f7bc16d2640>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f7bc16d6dc0>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.1, "exploration_fraction": 0.1, "target_update_interval": 250, "_n_calls": 100000, "max_grad_norm": 10, "exploration_rate": 0.1, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVZgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAADAvwAAwL8AAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAwD8AAMA/AACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFNbLTEuNSAgICAgICAtMS41ICAgICAgIC01LiAgICAgICAgLTUuICAgICAgICAtMy4xNDE1OTI3IC01LgogLTAuICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMS1sxLjUgICAgICAgMS41ICAgICAgIDUuICAgICAgICA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICAxLgogMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]", "low_repr": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVwwEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUaB+MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaCqKEEwAieA8aVZGBMdyR5gR1n+MA2luY5SKEF1tTxNpeZXnSjBPQglOxit1jApoYXNfdWludDMylEsBjAh1aW50ZWdlcpRKkI73T3VidWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVuAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUS9ob21lL3ZzY29kZS8ubG9jYWwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4NDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMUS9ob21lL3ZzY29kZS8ubG9jYWwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPxo24uscQy2FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "batch_norm_stats": [], "batch_norm_stats_target": [], "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVXAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyxkAXwAGACIAWsEchCIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAZABTAJROSwGGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIxRL2hvbWUvdnNjb2RlLy5sb2NhbC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLcUMGAAEMAQQClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxRL2hvbWUvdnNjb2RlLy5sb2NhbC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaB0pUpRoHSlSlIeUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoI32UfZQoaBhoDYwMX19xdWFsbmFtZV9flIwbZ2V0X2xpbmVhcl9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKGgKjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaC51jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/uZmZmZmZmoWUUpRoNkc/uZmZmZmZmoWUUpRoNkc/8AAAAAAAAIWUUpSHlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-6.2.0-1019-azure-x86_64-with-glibc2.36 # 19~22.04.1-Ubuntu SMP Wed Jan 10 22:57:03 UTC 2024", "Python": "3.9.18", "Stable-Baselines3": "2.1.0", "PyTorch": "2.2.1+cpu", "GPU Enabled": "False", "Numpy": "1.26.4", "Cloudpickle": "3.0.0", "Gymnasium": "0.29.1", "OpenAI Gym": "0.26.2"}}
dqn-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7dc80afb4d016a2eaf89ebab1f076a93ca9ec24232affbac60ea73ea88eea3d6
3
- size 1129713
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b213dd6ac78a6ad81330151a21fbfd198a7c9bbc49e50de9571ac38895fe0f48
3
+ size 106438
dqn-LunarLander-v2/data CHANGED
@@ -5,57 +5,85 @@
5
  "__module__": "stable_baselines3.dqn.policies",
6
  "__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}",
7
  "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
8
- "__init__": "<function DQNPolicy.__init__ at 0x7fdc7e944550>",
9
- "_build": "<function DQNPolicy._build at 0x7fdc7e9445e0>",
10
- "make_q_net": "<function DQNPolicy.make_q_net at 0x7fdc7e944670>",
11
- "forward": "<function DQNPolicy.forward at 0x7fdc7e944700>",
12
- "_predict": "<function DQNPolicy._predict at 0x7fdc7e944790>",
13
- "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7fdc7e944820>",
14
- "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7fdc7e9448b0>",
15
  "__abstractmethods__": "frozenset()",
16
- "_abc_impl": "<_abc._abc_data object at 0x7fdc7e947940>"
17
  },
18
  "verbose": 1,
19
- "policy_kwargs": {
20
- "net_arch": [
21
- 256,
22
- 256
23
- ]
24
- },
25
- "num_timesteps": 724,
26
  "_total_timesteps": 100000,
27
  "_num_timesteps_at_start": 0,
28
- "seed": 0,
29
  "action_noise": null,
30
- "start_time": 1709621687586089877,
31
- "learning_rate": {
32
- ":type:": "<class 'function'>",
33
- ":serialized:": "gAWV6AIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMaS9ob21lL25zYW5naGkvc2FuZGJveC9hcHJlc3MvZHJsLTJlZC92ZW52MzkvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4NDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMaS9ob21lL25zYW5naGkvc2FuZGJveC9hcHJlc3MvZHJsLTJlZC92ZW52MzkvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0Sk0rK/202FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
34
- },
35
  "tensorboard_log": null,
36
- "_last_obs": null,
 
 
 
37
  "_last_episode_starts": {
38
  ":type:": "<class 'numpy.ndarray'>",
39
  ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
40
  },
41
  "_last_original_obs": {
42
  ":type:": "<class 'numpy.ndarray'>",
43
- ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAECrMD5pK9U/dq4RPzCMDD6frHC+bVIGvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
44
  },
45
- "_episode_num": 8,
46
  "use_sde": false,
47
  "sde_sample_freq": -1,
48
- "_current_progress_remaining": 0.99276,
49
  "_stats_window_size": 100,
50
  "ep_info_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
- ":serialized:": "gAWVGAEAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwHd+SbH6uW+MAWyUS1GMAXSUR0AZbjuKGcnWdX2UKGgGR8BO892ovSMMaAdLbWgIR0AltINmUW2xdX2UKGgGR8BUIQqI7/4qaAdLT2gIR0Az87Uoa1kUdX2UKGgGR8B1op5C4SYgaAdLdGgIR0A7xMewLVnVdX2UKGgGR8BXi6XSjQAuaAdLRmgIR0BOa1PFefI0dX2UKGgGR8BbMVMZgogFaAdLS2gIR0BZvFZLZi/gdX2UKGgGR8BtJijafzz3aAdLV2gIR0Bi1y2QXAM2dX2UKGgGR8BLctFBppN9aAdLSGgIR0Bn0oppeu3ddWUu"
53
  },
54
  "ep_success_buffer": {
55
  ":type:": "<class 'collections.deque'>",
56
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
57
  },
58
- "_n_updates": 720,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
  "observation_space": {
60
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
61
  ":serialized:": "gAWVZgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAADAvwAAwL8AAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAwD8AAMA/AACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFNbLTEuNSAgICAgICAtMS41ICAgICAgIC01LiAgICAgICAgLTUuICAgICAgICAtMy4xNDE1OTI3IC01LgogLTAuICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMS1sxLjUgICAgICAgMS41ICAgICAgIDUuICAgICAgICA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICAxLgogMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==",
@@ -73,7 +101,7 @@
73
  },
74
  "action_space": {
75
  ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
76
- ":serialized:": "gAWVwAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUaB+MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaCqKEONhlaa3XlgJLUWWWTS1oRqMA2luY5SKEKlzeES8M4FYghr3OtvajUF1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
77
  "n": "4",
78
  "start": "0",
79
  "_shape": [],
@@ -81,47 +109,14 @@
81
  "_np_random": "Generator(PCG64)"
82
  },
83
  "n_envs": 1,
84
- "buffer_size": 1,
85
- "batch_size": 128,
86
- "learning_starts": 0,
87
- "tau": 1.0,
88
- "gamma": 0.99,
89
- "gradient_steps": -1,
90
- "optimize_memory_usage": false,
91
- "replay_buffer_class": {
92
- ":type:": "<class 'abc.ABCMeta'>",
93
- ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
94
- "__module__": "stable_baselines3.common.buffers",
95
- "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
96
- "__init__": "<function ReplayBuffer.__init__ at 0x7fdc7e9b8b80>",
97
- "add": "<function ReplayBuffer.add at 0x7fdc7e9b8c10>",
98
- "sample": "<function ReplayBuffer.sample at 0x7fdc7e9b8ca0>",
99
- "_get_samples": "<function ReplayBuffer._get_samples at 0x7fdc7e9b8d30>",
100
- "_maybe_cast_dtype": "<staticmethod object at 0x7fdc7ea34df0>",
101
- "__abstractmethods__": "frozenset()",
102
- "_abc_impl": "<_abc._abc_data object at 0x7fdc7e9b05c0>"
103
- },
104
- "replay_buffer_kwargs": {},
105
- "train_freq": {
106
- ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
107
- ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
108
- },
109
- "use_sde_at_warmup": false,
110
- "exploration_initial_eps": 1.0,
111
- "exploration_final_eps": 0.1,
112
- "exploration_fraction": 0.12,
113
- "target_update_interval": 250,
114
- "_n_calls": 724,
115
- "max_grad_norm": 10,
116
- "exploration_rate": 0.9456999999999998,
117
  "lr_schedule": {
118
  ":type:": "<class 'function'>",
119
- ":serialized:": "gAWV6AIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMaS9ob21lL25zYW5naGkvc2FuZGJveC9hcHJlc3MvZHJsLTJlZC92ZW52MzkvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4NDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMaS9ob21lL25zYW5naGkvc2FuZGJveC9hcHJlc3MvZHJsLTJlZC92ZW52MzkvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0Sk0rK/202FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
120
  },
121
  "batch_norm_stats": [],
122
  "batch_norm_stats_target": [],
123
  "exploration_schedule": {
124
  ":type:": "<class 'function'>",
125
- ":serialized:": "gAWVjAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyxkAXwAGACIAWsEchCIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAZABTAJROSwGGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIxpL2hvbWUvbnNhbmdoaS9zYW5kYm94L2FwcmVzcy9kcmwtMmVkL3ZlbnYzOS9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLcUMGAAEMAQQClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxpL2hvbWUvbnNhbmdoaS9zYW5kYm94L2FwcmVzcy9kcmwtMmVkL3ZlbnYzOS9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaB0pUpRoHSlSlIeUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoI32UfZQoaBhoDYwMX19xdWFsbmFtZV9flIwbZ2V0X2xpbmVhcl9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKGgKjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaC51jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/uZmZmZmZmoWUUpRoNkc/vrhR64UeuIWUUpRoNkc/8AAAAAAAAIWUUpSHlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
126
  }
127
  }
 
5
  "__module__": "stable_baselines3.dqn.policies",
6
  "__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}",
7
  "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
8
+ "__init__": "<function DQNPolicy.__init__ at 0x7f7bc1685040>",
9
+ "_build": "<function DQNPolicy._build at 0x7f7bc16850d0>",
10
+ "make_q_net": "<function DQNPolicy.make_q_net at 0x7f7bc1685160>",
11
+ "forward": "<function DQNPolicy.forward at 0x7f7bc16851f0>",
12
+ "_predict": "<function DQNPolicy._predict at 0x7f7bc1685280>",
13
+ "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7f7bc1685310>",
14
+ "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7f7bc16853a0>",
15
  "__abstractmethods__": "frozenset()",
16
+ "_abc_impl": "<_abc._abc_data object at 0x7f7bc1704700>"
17
  },
18
  "verbose": 1,
19
+ "policy_kwargs": {},
20
+ "num_timesteps": 100000,
 
 
 
 
 
21
  "_total_timesteps": 100000,
22
  "_num_timesteps_at_start": 0,
23
+ "seed": null,
24
  "action_noise": null,
25
+ "start_time": 1709631678889401888,
26
+ "learning_rate": 0.0001,
 
 
 
27
  "tensorboard_log": null,
28
+ "_last_obs": {
29
+ ":type:": "<class 'numpy.ndarray'>",
30
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAADPmhL36pw4+gBLTu/CPlb1JVMy8dA2ZOwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
31
+ },
32
  "_last_episode_starts": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
  ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
35
  },
36
  "_last_original_obs": {
37
  ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAALPFhL29VhA+jHgyu5fCmL0NPs68z50YPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
39
  },
40
+ "_episode_num": 610,
41
  "use_sde": false,
42
  "sde_sample_freq": -1,
43
+ "_current_progress_remaining": 0.0,
44
  "_stats_window_size": 100,
45
  "ep_info_buffer": {
46
  ":type:": "<class 'collections.deque'>",
47
+ ":serialized:": "gAWVFgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFeouCf6Gg2MAWyUS1mMAXSUR0AuiLl3hXKbdX2UKGgGR0AJiD9OymhuaAdLgWgIR0AumAU+LWI5dX2UKGgGR8B02WLFXJYDaAdLX2gIR0AupZ7ojfNzdX2UKGgGR8BUIBRVIZqEaAdLQmgIR0AurLAYYR/WdX2UKGgGR8B4fmWkadc0aAdLWmgIR0Aut3HJcPe6dX2UKGgGR8BgSjCJoCdSaAdLeWgIR0AuxGViWmgrdX2UKGgGR8BbZyzHCGeuaAdLZGgIR0AuzwZwXIludX2UKGgGR8BybvLGJemfaAdLW2gIR0Au244Ia99MdX2UKGgGR8B3fbWjGkvcaAdLWWgIR0Au5UbT+ee4dX2UKGgGR8Bj+b6ciGFjaAdLdWgIR0Au9FOO801qdX2UKGgGR8BWStFnZkCnaAdLZmgIR0AvAtFKCg9NdX2UKGgGR8Bo54y/KyOaaAdLZGgIR0AvDyzXz19OdX2UKGgGR8B3O32EkB0ZaAdLTGgIR0AvF0p3HJcPdX2UKGgGR0ABDvgFX7tRaAdLWWgIR0AvIIt16mfodX2UKGgGR8BrrMmShakiaAdLUmgIR0AvKVgQYk3TdX2UKGgGR8BveSqsEJSjaAdLUWgIR0AvMvxpcophdX2UKGgGR8BaUQw9JSR9aAdLSmgIR0AvOw5eZ5RkdX2UKGgGR8BfykGRmseXaAdLXGgIR0AvSMKCxu89dX2UKGgGR8BYowSJ0nw5aAdLc2gIR0AvV7aZhKDkdX2UKGgGR8Bdx8L4N7SiaAdLZ2gIR0AvY7OmixmkdX2UKGgGR8BgtVjbzshQaAdLYGgIR0AvdJ1aGHpKdX2UKGgGR8BgUwn+hoM8aAdLTGgIR0AvhBVuJk5IdX2UKGgGR8BXly6QNkOJaAdLQ2gIR0Avj5SFXaJzdX2UKGgGR8BD95J04iosaAdLi2gIR0Avpaews5GSdX2UKGgGR8BYGnaews5GaAdLcWgIR0AvtQ+lj3EidX2UKGgGR8BiYCQT238XaAdLgmgIR0AvxtD2JzkqdX2UKGgGR8B66kFfReC1aAdLbWgIR0AwSaxHG0eEdX2UKGgGR8BfpUVvddmhaAdLPGgIR0AwVAQxvegtdX2UKGgGR8B4ytnYg7o0aAdLUGgIR0AwY8s+V1OkdX2UKGgGR8CFm6sf7rLRaAdLgWgIR0Awfe/5+H8CdX2UKGgGR8CRvuEwWWQfaAdLnmgIR0Awn3u/k/8mdX2UKGgGR8CGp/68g6ltaAdLZ2gIR0AwuA44p+c6dX2UKGgGR8CBcKIE8q4IaAdLXmgIR0AwzLQ5WBBidX2UKGgGR8CC+FschkiEaAdLdGgIR0Aw7XA/LTx5dX2UKGgGR8CB5mTDfm9yaAdLmWgIR0AxEkZ75VOsdX2UKGgGR8B9yDv6TGHYaAdLXWgIR0AxJpBX0XgtdX2UKGgGR8B6qgbOu7pWaAdLSWgIR0AxNTpgTh5xdX2UKGgGR8CCS6A80UGnaAdLaGgIR0AxVNuLrHENdX2UKGgGR8CsALEGqxTsaAdNbAFoCEdAMcUjX4CZGHV9lChoBkfAe3DV6NVBEGgHS2VoCEdAMeISUTtb93V9lChoBkfAgip6UJOWSmgHS31oCEdAMf9JnQID5nV9lChoBkfAiZS4a5wwTWgHS3ZoCEdAMhd5Qgs9S3V9lChoBkfAhNxUeMhoumgHS6FoCEdAMjtayKNyYHV9lChoBkfArP8IG0NSZWgHTZABaAhHQDKyDlHSWqt1fZQoaAZHwID88cXFcY9oB0traAhHQDLJkc0cfeV1fZQoaAZHwJPGIdZJTVFoB00XAWgIR0AzEYgaFVT8dX2UKGgGR8CNjUX8fmtAaAdNeQFoCEdAM3XHJcPe6HV9lChoBkfAhHBGViWmg2gHTR8BaAhHQDPjkbPyCnR1fZQoaAZHwITt4RK6FuhoB00JAWgIR0A0MbS7Xg+AdX2UKGgGR8B1pPQzDXOGaAdNIgJoCEdANQ/QjUutfXV9lChoBkfAaDv2icoYvWgHTegDaAhHQDdjnX/YJ3R1fZQoaAZHwHX4b/82rGRoB01jAWgIR0A33k0Jng5zdX2UKGgGR8BkPf3xnWauaAdN6ANoCEdAObhQSBbwB3V9lChoBkfAZP9AeJYT02gHS4hoCEdAOdW1hLGrCHV9lChoBkfAdKDmYSg5BGgHS7NoCEdAOf+2VmjCYXV9lChoBkfAXPgQvpQk5mgHS+JoCEdAOjTQ3PzFuXV9lChoBkfAWZh4Y77sOWgHTegDaAhHQDwyOIZZSvV1fZQoaAZHwGJZYYJmdy1oB03DAWgIR0A8xsq8UVSGdX2UKGgGR8BWO0W69TP0aAdN6ANoCEdAPnPTXrdFfHV9lChoBkfAUu72Dg62fGgHTegDaAhHQEAjWXC0ngJ1fZQoaAZHwB30jgQ6IWRoB03oA2gIR0BBP6ews5GSdX2UKGgGR8BhjnBUJfICaAdN6ANoCEdAQg8t9QXQ+nV9lChoBkfAXsjlwLmZE2gHTegDaAhHQEMS6cy31Bd1fZQoaAZHQHDn7PMSsbNoB03WAmgIR0BDmkcjqv/zdX2UKGgGR0AdTIp6QeV+aAdNiAFoCEdAQ9KZ+hGpdnV9lChoBkfAhWgDFAE+xGgHTegDaAhHQETonuRcNYt1fZQoaAZHwHsU0IC2c8VoB03oA2gIR0BFqtL127nQdX2UKGgGR8B0wl3Ux20RaAdN6ANoCEdARnHeSB9TgnV9lChoBkfAch4p6yB062gHTegDaAhHQEd7PepGWld1fZQoaAZHwGTpnQpnYg9oB03oA2gIR0BIkQDmr8zidX2UKGgGR0BLSiHIp6QeaAdN6ANoCEdASdqWzF+/g3V9lChoBkfAIZUBnzxwymgHTegDaAhHQEqpIwM6RyR1fZQoaAZHQEjscMEzO5doB03oA2gIR0BLtB19v0iAdX2UKGgGR0BVK9hiLEUCaAdN6ANoCEdATMx9w3o9tHV9lChoBkdAXESHP/rB02gHTbQDaAhHQE2h7PY4ACJ1fZQoaAZHQDXDiZOSGJxoB03oA2gIR0BOkUSh8IAwdX2UKGgGR0BjcXCAMDwIaAdNhANoCEdAT2Ejopx3mnV9lChoBkdAUqSii7Ciy2gHTegDaAhHQFApGI9C/oJ1fZQoaAZHQFk0ZrYXfqJoB03oA2gIR0BQmSWzF+/hdX2UKGgGR0BBTJhnanJlaAdN6ANoCEdAUTj1Iy0rsnV9lChoBkdAQQys6q8142gHTegDaAhHQFGuoS+QEIR1fZQoaAZHQEgv7qptJnRoB03oA2gIR0BSJZkK/mDEdX2UKGgGR0BJDaAFxGUfaAdN6ANoCEdAUpnCGetjkXV9lChoBkdAYBnmjj7yhGgHTegDaAhHQFL8/eLvTgF1fZQoaAZHQFFlY02tMf1oB03oA2gIR0BTd59NN8E3dX2UKGgGR0Bwe10r9VFQaAdNJgNoCEdAU7wNI9TxXnV9lChoBkdAVxdf2K2rn2gHTegDaAhHQFQprIYFaB91fZQoaAZHQFkgdweeWfNoB03oA2gIR0BUvwAZKnNxdX2UKGgGR0BZRTN2TxG2aAdN6ANoCEdAVVDpdKNADHV9lChoBkdAUUxNj9XLeWgHTegDaAhHQFW1kYGdI5J1fZQoaAZHQGF/fapPykNoB03oA2gIR0BWEbqyGBWgdX2UKGgGR0BYJPNeMQ2/aAdN6ANoCEdAVopTqB3A23V9lChoBkdAWYmpAD7qIWgHTegDaAhHQFcUPluFYdR1fZQoaAZHQFUTix3V091oB03oA2gIR0BXilxffGdadX2UKGgGR0A/V2Pkq+ajaAdN6ANoCEdAWAM3vQWvbHV9lChoBkdAVy/OfNA1N2gHTegDaAhHQFh/3RXwLE11fZQoaAZHQFUvvXsgMc9oB03oA2gIR0BY+611GLDRdX2UKGgGR0BlKN7ngYP5aAdN4ANoCEdAWVhljEvTPXV9lChoBkdAUZk8B+4LC2gHTegDaAhHQFnWwudwvQF1fZQoaAZHQFClRB/qgRNoB03oA2gIR0BaXiP+4smOdWUu"
48
  },
49
  "ep_success_buffer": {
50
  ":type:": "<class 'collections.deque'>",
51
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
52
  },
53
+ "_n_updates": 12500,
54
+ "buffer_size": 1000000,
55
+ "batch_size": 32,
56
+ "learning_starts": 50000,
57
+ "tau": 1.0,
58
+ "gamma": 0.99,
59
+ "gradient_steps": 1,
60
+ "optimize_memory_usage": false,
61
+ "replay_buffer_class": {
62
+ ":type:": "<class 'abc.ABCMeta'>",
63
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
64
+ "__module__": "stable_baselines3.common.buffers",
65
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
66
+ "__init__": "<function ReplayBuffer.__init__ at 0x7f7bc16db0d0>",
67
+ "add": "<function ReplayBuffer.add at 0x7f7bc16db160>",
68
+ "sample": "<function ReplayBuffer.sample at 0x7f7bc16db1f0>",
69
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7f7bc16db280>",
70
+ "_maybe_cast_dtype": "<staticmethod object at 0x7f7bc16d2640>",
71
+ "__abstractmethods__": "frozenset()",
72
+ "_abc_impl": "<_abc._abc_data object at 0x7f7bc16d6dc0>"
73
+ },
74
+ "replay_buffer_kwargs": {},
75
+ "train_freq": {
76
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
77
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
78
+ },
79
+ "use_sde_at_warmup": false,
80
+ "exploration_initial_eps": 1.0,
81
+ "exploration_final_eps": 0.1,
82
+ "exploration_fraction": 0.1,
83
+ "target_update_interval": 250,
84
+ "_n_calls": 100000,
85
+ "max_grad_norm": 10,
86
+ "exploration_rate": 0.1,
87
  "observation_space": {
88
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
89
  ":serialized:": "gAWVZgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAADAvwAAwL8AAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAwD8AAMA/AACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFNbLTEuNSAgICAgICAtMS41ICAgICAgIC01LiAgICAgICAgLTUuICAgICAgICAtMy4xNDE1OTI3IC01LgogLTAuICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMS1sxLjUgICAgICAgMS41ICAgICAgIDUuICAgICAgICA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICAxLgogMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==",
 
101
  },
102
  "action_space": {
103
  ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
104
+ ":serialized:": "gAWVwwEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUaB+MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaCqKEEwAieA8aVZGBMdyR5gR1n+MA2luY5SKEF1tTxNpeZXnSjBPQglOxit1jApoYXNfdWludDMylEsBjAh1aW50ZWdlcpRKkI73T3VidWIu",
105
  "n": "4",
106
  "start": "0",
107
  "_shape": [],
 
109
  "_np_random": "Generator(PCG64)"
110
  },
111
  "n_envs": 1,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
112
  "lr_schedule": {
113
  ":type:": "<class 'function'>",
114
+ ":serialized:": "gAWVuAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUS9ob21lL3ZzY29kZS8ubG9jYWwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4NDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMUS9ob21lL3ZzY29kZS8ubG9jYWwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPxo24uscQy2FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
115
  },
116
  "batch_norm_stats": [],
117
  "batch_norm_stats_target": [],
118
  "exploration_schedule": {
119
  ":type:": "<class 'function'>",
120
+ ":serialized:": "gAWVXAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyxkAXwAGACIAWsEchCIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAZABTAJROSwGGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIxRL2hvbWUvdnNjb2RlLy5sb2NhbC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLcUMGAAEMAQQClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxRL2hvbWUvdnNjb2RlLy5sb2NhbC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaB0pUpRoHSlSlIeUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoI32UfZQoaBhoDYwMX19xdWFsbmFtZV9flIwbZ2V0X2xpbmVhcl9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKGgKjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaC51jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/uZmZmZmZmoWUUpRoNkc/uZmZmZmZmoWUUpRoNkc/8AAAAAAAAIWUUpSHlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
121
  }
122
  }
dqn-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d23cc94e3d3af4ed7711415633baa414133cf7d025a7de2d4ca34b47f9419485
3
- size 558240
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f18d549853c3213be341b35916b696dafabf5b7b83aacf4f7a65b03a20217b5c
3
+ size 45216
dqn-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ff5f4deb73f0a24c75f5e69235c87d7913f1b647e9ba6f0927925cf872bc0dac
3
- size 557362
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a6c5b4559a84b25a984d0d95b41c6f173099344303ed48838f11a41016d32c6
3
+ size 44338
dqn-LunarLander-v2/system_info.txt CHANGED
@@ -1,9 +1,9 @@
1
- - OS: Linux-5.15.133.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Thu Oct 5 21:02:42 UTC 2023
2
  - Python: 3.9.18
3
  - Stable-Baselines3: 2.1.0
4
- - PyTorch: 2.1.0+cpu
5
  - GPU Enabled: False
6
- - Numpy: 1.26.1
7
  - Cloudpickle: 3.0.0
8
  - Gymnasium: 0.29.1
9
  - OpenAI Gym: 0.26.2
 
1
+ - OS: Linux-6.2.0-1019-azure-x86_64-with-glibc2.36 # 19~22.04.1-Ubuntu SMP Wed Jan 10 22:57:03 UTC 2024
2
  - Python: 3.9.18
3
  - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.2.1+cpu
5
  - GPU Enabled: False
6
+ - Numpy: 1.26.4
7
  - Cloudpickle: 3.0.0
8
  - Gymnasium: 0.29.1
9
  - OpenAI Gym: 0.26.2
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fe90af5c84d184044f7a991b157b553b2bd6e77fca38d3552a7e3d421e84c5f7
3
- size 230147
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb107e76cc5f067bb745e1113900d59e6697248fb2b41d5f9054c7698a075a8e
3
+ size 185478
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -638.1819969999999, "std_reward": 102.53389534601408, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-03-05T13:35:44.587707"}
 
1
+ {"mean_reward": 87.34864089741605, "std_reward": 35.51083155982755, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-03-05T09:45:12.924341"}