File size: 1,752 Bytes
bce6060 89e3179 d4edafa bce6060 e985339 d4edafa b03577b 89e3179 bce6060 e985339 9fe06b0 d4edafa 9fe06b0 4761589 9fe06b0 d4edafa 9fe06b0 d4edafa 9fe06b0 d4edafa 9fe06b0 d4edafa 9fe06b0 d4edafa 9fe06b0 d4edafa 9fe06b0 d4edafa 9fe06b0 d4edafa 9fe06b0 d4edafa 42e1ff4 d4edafa 745c23d 42e1ff4 d4edafa 42e1ff4 d4edafa 4761589 d4edafa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
language:
- en
license: mit
tags:
- trl
- sft
- sgd
base_model: mistralai/Mistral-7B-Instruct-v0.3
datasets:
- nroggendorff/mayo
model-index:
- name: mayo
results: []
---
# Mayonnaise LLM
Mayo is a language model fine-tuned on the [Mayo dataset](https://huggingface.co/datasets/nroggendorff/mayo) using Supervised Fine-Tuning (SFT) and Teacher Reinforced Learning (TRL) techniques. It is based on the [Mistral 7b model](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3)
## Features
- Utilizes SFT and TRL techniques for improved performance
- Supports English language
## Usage
To use the Mayo LLM, you can load the model using the Hugging Face Transformers library:
```python
from transformers import pipeline
pipe = pipeline("text-generation", model="nroggendorff/mayo")
question = "What color is the sky?"
conv = [{"role": "user", "content": question}]
response = pipe(conv, max_new_tokens=32)[0]['generated_text'][-1]['content']
print(response)
```
To use the model with quantization:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import torch
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
model_id = "nroggendorff/mayo"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config)
prompt = "[INST] What color is the sky? [/INST]"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=32)
generated_text = tokenizer.batch_decode(outputs)[0]
print(generated_text)
```
## License
This project is licensed under the MIT License. |