|
--- |
|
license: mit |
|
library_name: peft |
|
tags: |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
base_model: LoftQ/Meta-Llama-3-8B-Instruct-4bit-64rank |
|
model-index: |
|
- name: llama3-8b-instruct-qlora-medium |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# llama3-8b-instruct-qlora-medium |
|
|
|
This model is a fine-tuned version of [LoftQ/Meta-Llama-3-8B-Instruct-4bit-64rank](https://huggingface.co/LoftQ/Meta-Llama-3-8B-Instruct-4bit-64rank) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7329 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- num_epochs: 30 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 2.2884 | 1.0 | 105 | 1.2658 | |
|
| 2.0727 | 2.0 | 210 | 1.0205 | |
|
| 1.9709 | 3.0 | 315 | 0.9518 | |
|
| 1.8768 | 4.0 | 420 | 0.9206 | |
|
| 1.7711 | 5.0 | 525 | 0.8761 | |
|
| 1.6379 | 6.0 | 630 | 0.8487 | |
|
| 1.4834 | 7.0 | 735 | 0.8200 | |
|
| 1.3144 | 8.0 | 840 | 0.8076 | |
|
| 1.1514 | 9.0 | 945 | 0.7972 | |
|
| 1.0148 | 10.0 | 1050 | 0.7865 | |
|
| 0.8944 | 11.0 | 1155 | 0.7846 | |
|
| 0.7844 | 12.0 | 1260 | 0.7767 | |
|
| 0.699 | 13.0 | 1365 | 0.7688 | |
|
| 0.6215 | 14.0 | 1470 | 0.7631 | |
|
| 0.5602 | 15.0 | 1575 | 0.7584 | |
|
| 0.503 | 16.0 | 1680 | 0.7548 | |
|
| 0.4597 | 17.0 | 1785 | 0.7514 | |
|
| 0.4226 | 18.0 | 1890 | 0.7484 | |
|
| 0.3903 | 19.0 | 1995 | 0.7441 | |
|
| 0.3646 | 20.0 | 2100 | 0.7390 | |
|
| 0.3407 | 21.0 | 2205 | 0.7385 | |
|
| 0.3237 | 22.0 | 2310 | 0.7357 | |
|
| 0.3108 | 23.0 | 2415 | 0.7343 | |
|
| 0.2999 | 24.0 | 2520 | 0.7337 | |
|
| 0.2917 | 25.0 | 2625 | 0.7333 | |
|
| 0.2868 | 26.0 | 2730 | 0.7324 | |
|
| 0.2815 | 27.0 | 2835 | 0.7327 | |
|
| 0.28 | 28.0 | 2940 | 0.7315 | |
|
| 0.2785 | 29.0 | 3045 | 0.7322 | |
|
| 0.2791 | 30.0 | 3150 | 0.7329 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.10.0 |
|
- Transformers 4.40.0 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.19.1 |