File size: 1,217 Bytes
d85d39c 27483d1 fb5bcc1 d85d39c 9bc6171 d85d39c 7cbbe85 eb03f3f 7cbbe85 36ebd7d 7bfb551 7cbbe85 8de08af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- mistral
- trl
- sft
datasets:
- merve/turkish_instructions
---
- **Developed by:** notbdq
- **License:** apache-2.0
- This model is a fine tuned mistral-7b-instruct-v0.2 with merve/turkish_instructions dataset.
- Instruct format:
```python
"Aşağıda bir görevi tanımlayan bir talimat ve daha fazla bağlam sağlayan bir girdi bulunmaktadır. Talebi uygun şekilde tamamlayan bir yanıt yazın.\n\n### Talimat:\n{}\n\n### Girdi:\n{}\n\n### Yanıt:\n{}"
```
- example inference code:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained("notbdq/mistral-turkish-v2")
tokenizer = AutoTokenizer.from_pretrained("notbdq/mistral-turkish-v2")
messages = [
{"role": "user", "content": "Yapay zeka nasıl bulundu?"},
]
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
model_inputs = encodeds.to(device)
model.to(device)
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])
``` |