|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PyTorch MPT model.""" |
|
|
|
import math |
|
from typing import Optional, Tuple, Union |
|
|
|
import faiss |
|
import numpy as np |
|
import torch |
|
import torch.utils.checkpoint |
|
from einops import rearrange |
|
from torch import nn |
|
from torch.linalg import vector_norm |
|
from torch.nn import CrossEntropyLoss, LayerNorm |
|
from torch.nn import functional as F |
|
from transformers.file_utils import ( |
|
add_code_sample_docstrings, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
) |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPastAndCrossAttentions, |
|
CausalLMOutputWithCrossAttentions, |
|
) |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import logging |
|
|
|
from emts_clean.src.mpt.configuration import ExtendedMptConfig |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CHECKPOINT_FOR_DOC = "mosaicml/mpt-7b" |
|
_CONFIG_FOR_DOC = "MptConfig" |
|
|
|
|
|
|
|
def _make_causal_mask( |
|
input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int |
|
) -> torch.BoolTensor: |
|
""" |
|
Make causal mask used for self-attention. |
|
""" |
|
batch_size, target_length = input_ids_shape |
|
mask = torch.empty( |
|
(target_length, target_length + past_key_values_length), |
|
dtype=torch.bool, |
|
device=device, |
|
) |
|
|
|
seq_ids = torch.arange(target_length, device=device) |
|
mask[:, past_key_values_length:] = seq_ids[:, None] < seq_ids[None, :] |
|
|
|
if past_key_values_length > 0: |
|
mask[:, :past_key_values_length] = False |
|
|
|
expanded_mask = mask[None, None, :, :].expand( |
|
batch_size, 1, target_length, target_length + past_key_values_length |
|
) |
|
return expanded_mask |
|
|
|
|
|
|
|
def _expand_mask(mask: torch.Tensor, tgt_length: int) -> torch.BoolTensor: |
|
""" |
|
Expands attention_mask from `[batch_size, src_length]` to `[batch_size, 1, tgt_length, src_length]`. |
|
""" |
|
batch_size, src_length = mask.shape |
|
tgt_length = tgt_length if tgt_length is not None else src_length |
|
|
|
expanded_mask = ~(mask[:, None, None, :].to(torch.bool)) |
|
return expanded_mask.expand(batch_size, 1, tgt_length, src_length) |
|
|
|
|
|
def build_mpt_alibi_tensor( |
|
num_heads, |
|
sequence_length, |
|
sequence_length_with_past, |
|
alibi_bias_max=8, |
|
device=None, |
|
for_ae=False, |
|
topk=None, |
|
): |
|
r""" |
|
Link to paper: https://arxiv.org/abs/2108.12409 - Alibi tensor is not causal as the original paper mentions, it |
|
relies on a translation invariance of softmax for quick implementation. This implementation has been copied from |
|
the alibi implementation of MPT source code that led to slightly different results than the Bloom alibi: |
|
https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L292 |
|
""" |
|
if not for_ae: |
|
alibi = torch.arange( |
|
1 - sequence_length, 1, dtype=torch.int32, device=device |
|
).view(1, 1, 1, sequence_length) |
|
else: |
|
alibi = ( |
|
torch.tensor(-sequence_length_with_past, dtype=torch.int32, device=device) |
|
.repeat(sequence_length * topk) |
|
.view(1, 1, 1, sequence_length * topk) |
|
) |
|
num_heads_power_of_2 = 2 ** math.ceil(math.log2(num_heads)) |
|
|
|
base = torch.arange(1, num_heads_power_of_2 + 1, dtype=torch.float32, device=device) |
|
base = base * (alibi_bias_max / num_heads_power_of_2) |
|
|
|
slopes = 1.0 / torch.pow(2, base) |
|
slopes = slopes.view(1, num_heads, 1, 1) |
|
|
|
if num_heads_power_of_2 != num_heads: |
|
slopes = torch.concat([slopes[1::2], slopes[::2]])[:num_heads] |
|
|
|
alibi = alibi * slopes |
|
return alibi.squeeze(0) |
|
|
|
|
|
class ExtendedMptAttention(nn.Module): |
|
"""Multi-head self attention. |
|
Using torch or triton attention implemetation enables user to also use additive bias. |
|
""" |
|
|
|
def __init__(self, config: ExtendedMptConfig): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
self.n_heads = config.n_heads |
|
self.n_layers = config.n_layers |
|
self.head_dim = self.hidden_size // self.n_heads |
|
self.softmax_scale = config.attn_config.softmax_scale |
|
if self.softmax_scale is None: |
|
self.softmax_scale = 1 / math.sqrt(self.hidden_size / self.n_heads) |
|
|
|
self.attn_dropout_p = config.attn_config.attn_pdrop |
|
self.Wqkv = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=False) |
|
self.out_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
position_bias: torch.Tensor, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
long_range_past_key_value=None, |
|
topk=None, |
|
faiss_indexes=None, |
|
mask_by_sim=None, |
|
sim_threshold=None, |
|
position_bias_ae=None, |
|
current_layer=None, |
|
output_retrieved_memory_idx=False, |
|
): |
|
batch_size, seq_length = hidden_states.shape[:2] |
|
|
|
mixed_qkv = self.Wqkv(hidden_states) |
|
query_states, key_states, value_states = mixed_qkv.chunk(3, dim=2) |
|
query_states = query_states.reshape( |
|
batch_size, seq_length, self.n_heads, self.head_dim |
|
).transpose(1, 2) |
|
key_states = key_states.reshape( |
|
batch_size, seq_length, self.n_heads, self.head_dim |
|
).transpose(1, 2) |
|
value_states = value_states.reshape( |
|
batch_size, seq_length, self.n_heads, self.head_dim |
|
).transpose(1, 2) |
|
|
|
if past_key_value is not None: |
|
if len(past_key_value) != 0: |
|
key_states = torch.cat([past_key_value[0], key_states], dim=2) |
|
value_states = torch.cat([past_key_value[1], value_states], dim=2) |
|
past_key_value = (key_states, value_states) |
|
bsz, nh, s_q, d = query_states.shape |
|
|
|
attention_scores = ( |
|
torch.matmul(query_states, key_states.transpose(-1, -2)) |
|
* self.softmax_scale |
|
) |
|
key_length = key_states.shape[-2] |
|
query_length = ( |
|
seq_length |
|
if past_key_value is None |
|
else seq_length + past_key_value[0].shape[2] |
|
) |
|
if position_bias is not None: |
|
if len(position_bias.shape) != 3: |
|
raise ValueError( |
|
f"Expecting position_bias shape to be 3 dimensions, got {len(position_bias.shape)}" |
|
) |
|
|
|
position_bias_query_index = max(0, position_bias.size(1) - query_length) |
|
position_bias_key_index = max(0, position_bias.size(2) - key_length) |
|
|
|
position_bias = position_bias[ |
|
:, position_bias_query_index:, position_bias_key_index: |
|
] |
|
|
|
attention_scores = attention_scores + position_bias |
|
|
|
|
|
if long_range_past_key_value is not None or faiss_indexes is not None: |
|
if long_range_past_key_value is not None: |
|
k_cache, v_cache = long_range_past_key_value |
|
s_cache = k_cache.size(-2) |
|
|
|
k_cache = k_cache.to(key_states.device) |
|
v_cache = v_cache.to(key_states.device) |
|
|
|
|
|
q_n = query_states / vector_norm( |
|
query_states, ord=2, dim=-1, keepdim=True |
|
) |
|
k_n = k_cache / vector_norm(k_cache, ord=2, dim=-1, keepdim=True) |
|
sim = q_n.matmul(k_n.transpose(-1, -2)) |
|
if s_cache < topk: |
|
topk = s_cache |
|
val, idx = torch.topk(sim, k=topk, dim=-1) |
|
|
|
reshaped_idx = idx.reshape(bsz, nh, s_q * topk) |
|
selected_k = k_cache.gather( |
|
dim=-2, index=reshaped_idx.unsqueeze(-1).expand(-1, -1, -1, d) |
|
) |
|
selected_v = v_cache.gather( |
|
dim=-2, index=reshaped_idx.unsqueeze(-1).expand(-1, -1, -1, d) |
|
) |
|
|
|
elif faiss_indexes is not None: |
|
kn_index, kv_index = faiss_indexes |
|
q_n = query_states / vector_norm( |
|
query_states, ord=2, dim=-1, keepdim=True |
|
) |
|
|
|
one_hot_encodings = ( |
|
F.one_hot( |
|
torch.arange(0, nh * self.n_layers, device=query_states.device) |
|
) |
|
* 10 |
|
) |
|
q_n = torch.concat( |
|
[ |
|
rearrange(q_n, "b h s d -> b (h s) d", h=nh), |
|
one_hot_encodings[nh * current_layer : nh * (current_layer + 1)] |
|
.unsqueeze(0) |
|
.repeat_interleave(repeats=query_states.size(-2), dim=-2), |
|
], |
|
dim=-1, |
|
).squeeze() |
|
|
|
if kn_index.ntotal / (nh * self.n_layers) < topk: |
|
topk = int(kn_index.ntotal / (nh * self.n_layers)) |
|
|
|
val, idx = kn_index.search(q_n.to("cpu").detach().numpy(), k=topk) |
|
val = torch.tensor(val - 100).reshape(bsz, nh, s_q, topk) |
|
reshaped_idx = torch.tensor( |
|
idx % (kn_index.ntotal / (nh * self.n_layers)) |
|
).reshape(bsz, nh, s_q * topk) |
|
|
|
|
|
selected_k = rearrange( |
|
torch.tensor(kv_index.reconstruct_batch(idx.flatten()))[:, :d], |
|
"(h s) d -> 1 h s d", |
|
h=nh, |
|
).to(query_states.device) |
|
selected_v = rearrange( |
|
torch.tensor(kv_index.reconstruct_batch(idx.flatten()))[:, d:], |
|
"(h s) d -> 1 h s d", |
|
h=nh, |
|
).to(query_states.device) |
|
|
|
selected_key_length = selected_k.size(-2) |
|
key_length += selected_key_length |
|
attention_scores_cache = ( |
|
query_states.matmul(selected_k.transpose(-1, -2)) * self.softmax_scale |
|
) |
|
|
|
if mask_by_sim: |
|
sim_mask = ( |
|
rearrange(~(val > sim_threshold).bool(), "b h s i -> b h (s i)") |
|
.unsqueeze(-2) |
|
.expand(-1, -1, s_q, -1) |
|
).to(query_states.device) |
|
|
|
attention_scores_cache = attention_scores_cache.masked_fill( |
|
sim_mask, torch.finfo(query_states.dtype).min |
|
) |
|
|
|
|
|
if position_bias_ae is not None: |
|
if len(position_bias_ae.shape) != 3: |
|
raise ValueError( |
|
f"Expecting position_bias shape to be 3 dimensions, got {len(position_bias_ae.shape)}" |
|
) |
|
|
|
position_bias_query_index = max( |
|
0, position_bias_ae.size(1) - query_length |
|
) |
|
position_bias_key_index = max( |
|
0, position_bias_ae.size(2) - selected_key_length |
|
) |
|
|
|
position_bias_ae = position_bias_ae[ |
|
:, position_bias_query_index:, position_bias_key_index: |
|
] |
|
|
|
attention_scores_cache = attention_scores_cache + position_bias_ae |
|
|
|
|
|
attention_scores = torch.cat( |
|
[attention_scores_cache, attention_scores], dim=-1 |
|
) |
|
value_states = torch.cat([selected_v, value_states], dim=-2) |
|
|
|
|
|
def _create_external_memories_mask(k, s_q, device): |
|
mask = torch.zeros(s_q, s_q * k, device=device, dtype=torch.bool) |
|
for i in range(s_q): |
|
mask[i, i * k : (i + 1) * k] = 1 |
|
return ~mask |
|
|
|
if attention_mask is not None: |
|
|
|
if long_range_past_key_value is not None or faiss_indexes is not None: |
|
mask = _create_external_memories_mask( |
|
k=topk, s_q=s_q, device=attention_scores.device |
|
) |
|
attention_mask = attention_mask.squeeze(dim=0).squeeze(dim=0) |
|
attention_mask = torch.cat([mask, attention_mask], dim=1) |
|
attention_scores = attention_scores.masked_fill( |
|
attention_mask, torch.finfo(query_states.dtype).min |
|
) |
|
|
|
|
|
attn_weights = nn.functional.softmax(attention_scores.float(), dim=-1).to( |
|
value_states.dtype |
|
) |
|
attn_weights = nn.functional.dropout( |
|
attn_weights, p=self.attn_dropout_p, training=self.training |
|
) |
|
|
|
context_states = torch.matmul(attn_weights, value_states) |
|
context_states = ( |
|
context_states.permute(0, 2, 1, 3) |
|
.contiguous() |
|
.view(batch_size, seq_length, -1) |
|
) |
|
attn_output = self.out_proj(context_states) |
|
|
|
if not output_retrieved_memory_idx: |
|
reshaped_idx = None |
|
|
|
return attn_output, attn_weights, past_key_value, reshaped_idx |
|
|
|
|
|
class MptMLP(nn.Module): |
|
def __init__(self, config: ExtendedMptConfig): |
|
super().__init__() |
|
hidden_size = config.hidden_size |
|
|
|
self.up_proj = nn.Linear(hidden_size, 4 * hidden_size, bias=False) |
|
self.act = nn.GELU(approximate="none") |
|
self.down_proj = nn.Linear(4 * hidden_size, hidden_size, bias=False) |
|
self.hidden_dropout = config.attn_config.attn_pdrop |
|
|
|
def forward( |
|
self, hidden_states: torch.Tensor, residual: torch.Tensor |
|
) -> torch.Tensor: |
|
hidden_states = self.act(self.up_proj(hidden_states)) |
|
|
|
intermediate_output = self.down_proj(hidden_states) |
|
|
|
output = F.dropout( |
|
intermediate_output, p=self.hidden_dropout, training=self.training |
|
) |
|
output = output + residual |
|
|
|
return output |
|
|
|
|
|
class MptBlock(nn.Module): |
|
"""MPTBlock""" |
|
|
|
def __init__(self, config: ExtendedMptConfig): |
|
super().__init__() |
|
hidden_size = config.hidden_size |
|
|
|
self.norm_1 = LayerNorm(hidden_size, eps=config.layer_norm_epsilon) |
|
|
|
self.norm_1.bias = None |
|
|
|
self.num_heads = config.n_heads |
|
self.attn = ExtendedMptAttention(config) |
|
|
|
self.norm_2 = LayerNorm(hidden_size, eps=config.layer_norm_epsilon) |
|
|
|
self.norm_2.bias = None |
|
|
|
self.ffn = MptMLP(config) |
|
|
|
self.dropout_rate = config.attn_config.attn_pdrop |
|
self.resid_attn_dropout = nn.Dropout(self.dropout_rate) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
position_bias: torch.Tensor, |
|
attention_mask: torch.Tensor, |
|
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
use_cache: bool = False, |
|
output_attentions: bool = False, |
|
output_retrieved_memory_idx: bool = False, |
|
topk: int = None, |
|
long_range_past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
faiss_indexes: Tuple = None, |
|
position_bias_ae=None, |
|
current_layer: int = None, |
|
mask_by_sim: bool = False, |
|
sim_threshold: float = None, |
|
): |
|
|
|
|
|
layernorm_output = self.norm_1(hidden_states) |
|
|
|
residual = hidden_states |
|
|
|
|
|
attn_outputs, attn_weights, past_key_value, reshaped_idx = self.attn( |
|
layernorm_output, |
|
position_bias=position_bias, |
|
attention_mask=attention_mask, |
|
past_key_value=layer_past, |
|
long_range_past_key_value=long_range_past_key_value, |
|
topk=topk, |
|
faiss_indexes=faiss_indexes, |
|
position_bias_ae=position_bias_ae, |
|
current_layer=current_layer, |
|
mask_by_sim=mask_by_sim, |
|
sim_threshold=sim_threshold, |
|
output_retrieved_memory_idx=output_retrieved_memory_idx, |
|
) |
|
|
|
hidden_states = self.resid_attn_dropout(attn_outputs) + residual |
|
|
|
layernorm_output = self.norm_2(hidden_states) |
|
|
|
|
|
residual = hidden_states |
|
|
|
|
|
output = self.ffn(layernorm_output, residual) |
|
outputs = (output,) |
|
|
|
if use_cache: |
|
outputs += (past_key_value,) |
|
|
|
if output_attentions: |
|
outputs += (attn_weights,) |
|
if output_retrieved_memory_idx: |
|
outputs += (reshaped_idx,) |
|
|
|
return outputs |
|
|
|
|
|
class MptPreTrainedModel(PreTrainedModel): |
|
"""MPT Pretrained Model""" |
|
|
|
config_class = ExtendedMptConfig |
|
base_model_prefix = "transformer" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["MptBlock"] |
|
_keys_to_ignore_on_load_missing = [r"lm_head.*."] |
|
|
|
def __init__(self, *inputs, **kwargs): |
|
super().__init__(*inputs, **kwargs) |
|
|
|
def _init_weights(self, module: nn.Module): |
|
"""Initialize the weights.""" |
|
if isinstance(module, nn.Linear): |
|
|
|
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, LayerNorm): |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|
|
def _set_gradient_checkpointing(self, module: nn.Module, value: bool = False): |
|
if isinstance(module, ExtendedMptConfig): |
|
module.gradient_checkpointing = value |
|
|
|
@staticmethod |
|
def _convert_to_mpt_cache( |
|
past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]] |
|
) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]: |
|
""" |
|
Converts the cache to the format expected by Mpt, i.e. to tuple(tuple([batch_size * num_heads, ...])) |
|
""" |
|
batch_size, num_heads, head_dim, seq_length = past_key_value[0][0].shape |
|
batch_size_times_num_heads = batch_size * num_heads |
|
|
|
|
|
return tuple( |
|
( |
|
layer_past[0].reshape(batch_size_times_num_heads, head_dim, seq_length), |
|
layer_past[1].reshape(batch_size_times_num_heads, seq_length, head_dim), |
|
) |
|
for layer_past in past_key_value |
|
) |
|
|
|
|
|
MPT_START_DOCSTRING = r""" |
|
|
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`ExtendedMptConfig`]): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
MPT_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`): |
|
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values[0][0].shape[2]` |
|
(`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary. |
|
|
|
If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as |
|
`input_ids`. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`): |
|
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see |
|
`past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have |
|
their past given to this model should not be passed as `input_ids` as they have already been computed. |
|
|
|
Each element of `past_key_values` is a tuple (past_key, past_value): |
|
- past_key: [batch_size * num_heads, head_dim, kv_length] |
|
- past_value: [batch_size * num_heads, kv_length, head_dim] |
|
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
|
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
|
|
If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see |
|
`past_key_values`). |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. |
|
use_external_mind (`bool`, *optional*, defaults to `True`): |
|
Whether to attend to external memories. |
|
long_range_past_key_values (`List[Tuple[torch.FloatTensor]]`, *optional*, defaults to None): |
|
Manual store for memories. |
|
faiss_indexes (`Tuple[faiss.swigfaiss_avx2.IndexFlatIP]`, *optional*, defaults to None): |
|
Vector store for memories. |
|
topk (`int`, *optional*, defaults to `10`): |
|
Number of external memories for each query token to retrieve and attend to. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare Mpt Model transformer outputting raw hidden-states without any specific head on top.", |
|
MPT_START_DOCSTRING, |
|
) |
|
class ExtendedMptModel(MptPreTrainedModel): |
|
"""Extended MPT Model""" |
|
|
|
def __init__(self, config: ExtendedMptConfig): |
|
super().__init__(config) |
|
|
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.n_heads |
|
|
|
|
|
self.wte = nn.Embedding(config.vocab_size, self.hidden_size) |
|
|
|
|
|
self.blocks = nn.ModuleList([MptBlock(config) for _ in range(config.n_layers)]) |
|
|
|
|
|
self.norm_f = LayerNorm(self.hidden_size, eps=config.layer_norm_epsilon) |
|
|
|
self.norm_f.bias = None |
|
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
self.post_init() |
|
|
|
self.mask_by_sim = config.attn_config.mask_by_sim |
|
self.sim_threshold = config.attn_config.sim_threshold |
|
self.topk = config.attn_config.topk |
|
self.use_external_mind = config.use_external_mind |
|
self.use_external_mind_by_layer = config.use_external_mind_by_layer |
|
|
|
def get_input_embeddings(self): |
|
return self.wte |
|
|
|
def build_mpt_alibi_tensor( |
|
self, |
|
num_heads, |
|
sequence_length, |
|
sequence_length_with_past, |
|
alibi_bias_max=8, |
|
device=None, |
|
for_ae=None, |
|
topk=None, |
|
): |
|
return build_mpt_alibi_tensor( |
|
num_heads, |
|
sequence_length, |
|
sequence_length_with_past, |
|
alibi_bias_max, |
|
device, |
|
for_ae=for_ae, |
|
topk=topk, |
|
) |
|
|
|
def _prepare_attn_mask( |
|
self, |
|
attention_mask: torch.Tensor, |
|
input_shape: Tuple[int, int], |
|
past_key_values_length: int, |
|
) -> torch.BoolTensor: |
|
|
|
|
|
if input_shape[1] + past_key_values_length != attention_mask.shape[1]: |
|
raise ValueError( |
|
"Attention mask shape should be (batch_size, seq_length + past_key_values_length)" |
|
f" but is {attention_mask.shape} with input_ids shape {input_shape} and past length" |
|
f" {past_key_values_length}." |
|
) |
|
combined_attention_mask = None |
|
device = attention_mask.device |
|
_, src_length = input_shape |
|
|
|
if src_length > 1: |
|
combined_attention_mask = _make_causal_mask( |
|
input_shape, |
|
device=device, |
|
past_key_values_length=past_key_values_length, |
|
) |
|
|
|
|
|
expanded_attn_mask = _expand_mask(attention_mask, tgt_length=src_length) |
|
combined_attention_mask = ( |
|
expanded_attn_mask |
|
if combined_attention_mask is None |
|
else expanded_attn_mask | combined_attention_mask |
|
) |
|
|
|
return combined_attention_mask |
|
|
|
def set_input_embeddings(self, new_embeddings: torch.Tensor): |
|
self.wte = new_embeddings |
|
|
|
@add_start_docstrings_to_model_forward(MPT_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=BaseModelOutputWithPastAndCrossAttentions, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
output_retrieved_memory_idx: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
use_external_mind: Optional[bool] = None, |
|
long_range_past_key_values: Optional[list[Tuple[torch.FloatTensor]]] = None, |
|
faiss_indexes: Tuple = None, |
|
topk: int = None, |
|
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]: |
|
output_attentions = ( |
|
output_attentions |
|
if output_attentions is not None |
|
else self.config.output_attentions |
|
) |
|
output_retrieved_memory_idx = ( |
|
output_retrieved_memory_idx |
|
if output_retrieved_memory_idx is not None |
|
else False |
|
) |
|
output_hidden_states = ( |
|
output_hidden_states |
|
if output_hidden_states is not None |
|
else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
use_external_mind = ( |
|
use_external_mind |
|
if use_external_mind is not None |
|
else self.use_external_mind |
|
) |
|
topk = topk if topk is not None else self.topk |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError( |
|
"You cannot specify both input_ids and inputs_embeds at the same time" |
|
) |
|
elif input_ids is not None: |
|
batch_size, seq_length = input_ids.shape |
|
elif inputs_embeds is not None: |
|
batch_size, seq_length, _ = inputs_embeds.shape |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
if past_key_values is None: |
|
past_key_values = tuple([None] * len(self.blocks)) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.wte(input_ids) |
|
|
|
hidden_states = inputs_embeds |
|
|
|
presents = () if use_cache else None |
|
all_self_attentions = () if output_attentions else None |
|
all_hidden_states = () if output_hidden_states else None |
|
all_idx = () if output_retrieved_memory_idx else None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
|
|
seq_length_with_past = seq_length |
|
past_key_values_length = 0 |
|
if past_key_values[0] is not None: |
|
past_key_values_length = past_key_values[0][0].shape[2] |
|
seq_length_with_past = seq_length_with_past + past_key_values_length |
|
if attention_mask is None: |
|
attention_mask = torch.ones( |
|
(batch_size, seq_length_with_past), device=hidden_states.device |
|
) |
|
else: |
|
attention_mask = attention_mask.to(hidden_states.device) |
|
|
|
alibi = self.build_mpt_alibi_tensor( |
|
self.num_heads, |
|
self.config.max_seq_len, |
|
seq_length_with_past, |
|
device=hidden_states.device, |
|
) |
|
|
|
alibi_ae = self.build_mpt_alibi_tensor( |
|
self.num_heads, |
|
seq_length, |
|
seq_length_with_past, |
|
device=hidden_states.device, |
|
for_ae=True, |
|
topk=topk, |
|
) |
|
|
|
causal_mask = self._prepare_attn_mask( |
|
attention_mask, |
|
input_shape=(batch_size, seq_length), |
|
past_key_values_length=past_key_values_length, |
|
) |
|
|
|
for i, (block, layer_past) in enumerate(zip(self.blocks, past_key_values)): |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
long_range_past_key_value = ( |
|
long_range_past_key_values[i] |
|
if ( |
|
long_range_past_key_values is not None |
|
and self.use_external_mind_by_layer[i] |
|
and use_external_mind is True |
|
) |
|
else None |
|
) |
|
if long_range_past_key_value is not None and faiss_indexes is not None: |
|
raise NotImplementedError( |
|
"""Using faiss and passing key value pairs |
|
manually are mutually exclusive right now.""" |
|
) |
|
if self.gradient_checkpointing and self.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
|
|
return module( |
|
*inputs, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
|
|
return custom_forward |
|
|
|
outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(block), |
|
hidden_states, |
|
alibi, |
|
causal_mask, |
|
layer_past, |
|
) |
|
else: |
|
outputs = block( |
|
hidden_states, |
|
layer_past=layer_past, |
|
attention_mask=causal_mask, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_retrieved_memory_idx=output_retrieved_memory_idx, |
|
position_bias=alibi, |
|
position_bias_ae=alibi_ae, |
|
topk=topk, |
|
long_range_past_key_value=long_range_past_key_value, |
|
faiss_indexes=faiss_indexes, |
|
mask_by_sim=self.mask_by_sim, |
|
sim_threshold=self.sim_threshold, |
|
current_layer=i, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
if use_cache is True: |
|
presents = presents + (outputs[1],) |
|
|
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + ( |
|
outputs[2 if use_cache else 1], |
|
) |
|
if output_retrieved_memory_idx: |
|
idx = ( |
|
3 |
|
if (use_cache & output_attentions) |
|
else 2 |
|
if (use_cache or output_attentions) |
|
else 1 |
|
) |
|
all_idx = all_idx + (outputs[idx],) |
|
|
|
|
|
hidden_states = self.norm_f(hidden_states) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [ |
|
hidden_states, |
|
presents, |
|
all_hidden_states, |
|
all_self_attentions, |
|
all_idx, |
|
] |
|
if v is not None |
|
) |
|
|
|
return BaseModelOutputWithPastAndCrossAttentions( |
|
last_hidden_state=hidden_states, |
|
past_key_values=presents, |
|
hidden_states=all_hidden_states, |
|
attentions=(all_self_attentions, all_idx), |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
The MPT Model transformer with a language modeling head on top (linear layer with weights tied to the input |
|
embeddings). |
|
""", |
|
MPT_START_DOCSTRING, |
|
) |
|
class ExtendedMptForCausalLM(MptPreTrainedModel): |
|
"""Extended MPT for Causal LM.""" |
|
|
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
def __init__(self, config: ExtendedMptConfig, external_memories:list=None): |
|
super().__init__(config) |
|
self.transformer: ExtendedMptModel = ExtendedMptModel(config) |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
self.use_external_mind = config.use_external_mind |
|
self.memory_type = config.attn_config.memory_type |
|
self.memory_ids = None |
|
self.memories = None |
|
self.memory_device = config.attn_config.memory_device |
|
self.remove_special_ids = config.attn_config.remove_special_ids |
|
self.tokenizer_all_special_ids = config.attn_config.tokenizer_all_special_ids |
|
|
|
|
|
if external_memories is not None: |
|
self.memory_ids = external_memories |
|
|
|
self.post_init() |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings: torch.Tensor): |
|
self.lm_head = new_embeddings |
|
|
|
|
|
def clear_memory(self): |
|
"""Clear memory cache.""" |
|
self.memory_ids = None |
|
self.memories = None |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids: torch.LongTensor, |
|
past_key_values: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
**kwargs, |
|
) -> dict: |
|
|
|
if past_key_values: |
|
input_ids = input_ids[:, -1].unsqueeze(-1) |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs.update( |
|
{ |
|
"past_key_values": past_key_values, |
|
"use_cache": use_cache, |
|
"attention_mask": attention_mask, |
|
"use_external_mind": kwargs.get("use_external_mind"), |
|
"topk": kwargs.get("topk"), |
|
} |
|
) |
|
return model_inputs |
|
|
|
@add_start_docstrings_to_model_forward(MPT_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=CausalLMOutputWithCrossAttentions, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_retrieved_memory_idx: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
use_external_mind: Optional[bool] = None, |
|
topk: int = None, |
|
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set |
|
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` |
|
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` |
|
""" |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
|
|
if ( |
|
self.memory_ids is not None and self.memories is None |
|
): |
|
self.memory_ids = torch.tensor([self.memory_ids], device=self.device) if type(self.memory_ids)==list else self.memory_ids |
|
self.memories = self.generate_cache( |
|
self.memory_ids, cache_type=self.memory_type, |
|
) |
|
|
|
if self.remove_special_ids: |
|
idx_to_remove = [ |
|
token_idx |
|
for token_idx, token in enumerate(self.memory_ids[0]) |
|
if token in self.tokenizer_all_special_ids |
|
] |
|
if self.memory_type == "manual": |
|
mask = torch.ones(self.memories[0][0].size(), dtype=torch.bool) |
|
mask[:, :, idx_to_remove, :] = False |
|
|
|
new_size = ( |
|
self.memories[0][0].size(0), |
|
self.memories[0][0].size(1), |
|
-1, |
|
self.memories[0][0].size(3), |
|
) |
|
self.memories = [ |
|
(ks[mask].view(new_size), vs[mask].view(new_size)) |
|
for ks, vs in self.memories |
|
] |
|
else: |
|
kn_index, kv_index = self.memories |
|
all_idx_to_remove = [ |
|
[ |
|
i |
|
for i in range(0, kn_index.ntotal) |
|
if ( |
|
i |
|
% ( |
|
kn_index.ntotal |
|
/ ( |
|
self.config.num_attention_heads |
|
* self.config.num_hidden_layers |
|
) |
|
) |
|
) |
|
== j |
|
] |
|
for j in idx_to_remove |
|
] |
|
kn_index.remove_ids( |
|
np.array(all_idx_to_remove).flatten().astype("int64") |
|
) |
|
kv_index.remove_ids( |
|
np.array(all_idx_to_remove).flatten().astype("int64") |
|
) |
|
|
|
use_external_mind = ( |
|
use_external_mind |
|
if use_external_mind is not None |
|
else self.use_external_mind |
|
) |
|
topk = topk if topk is not None else None |
|
|
|
long_range_past_key_values = None |
|
faiss_indexes = None |
|
if hasattr(self, "memories") and isinstance(self.memories, list): |
|
long_range_past_key_values = self.memories |
|
elif hasattr(self, "memories"): |
|
faiss_indexes = self.memories |
|
|
|
transformer_outputs = self.transformer( |
|
input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_retrieved_memory_idx=output_retrieved_memory_idx, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
long_range_past_key_values=long_range_past_key_values, |
|
faiss_indexes=faiss_indexes, |
|
use_external_mind=use_external_mind, |
|
topk=topk, |
|
) |
|
hidden_states = transformer_outputs[0] |
|
|
|
lm_logits = self.lm_head(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
labels = labels.to(lm_logits.device) |
|
|
|
shift_logits = lm_logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
batch_size, seq_length, vocab_size = shift_logits.shape |
|
|
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct( |
|
shift_logits.view(batch_size * seq_length, vocab_size), |
|
shift_labels.view(batch_size * seq_length), |
|
) |
|
|
|
if not return_dict: |
|
output = (lm_logits,) + transformer_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return CausalLMOutputWithCrossAttentions( |
|
loss=loss, |
|
logits=lm_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
|
|
def _reorder_cache( |
|
self, |
|
past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], |
|
beam_idx: torch.LongTensor, |
|
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]: |
|
""" |
|
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or |
|
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct |
|
beam_idx at every generation step. |
|
|
|
Output shares the same memory storage as `past`. |
|
""" |
|
|
|
device_to_beam_idx = { |
|
past_state.device: beam_idx.to(past_state.device) |
|
for layer_past in past |
|
for past_state in layer_past |
|
} |
|
reordered_past = tuple( |
|
( |
|
layer_past[0].index_select(0, device_to_beam_idx[layer_past[0].device]), |
|
layer_past[1].index_select(0, device_to_beam_idx[layer_past[0].device]), |
|
) |
|
for layer_past in past |
|
) |
|
return reordered_past |
|
|
|
|
|
def generate_cache( |
|
self, |
|
input_ids: torch.LongTensor, |
|
stride: int = 512, |
|
max_len: int = 3072, |
|
cache_type: str = "manual", |
|
): |
|
"""Generate cache for long range attention.""" |
|
if cache_type not in ["manual", "faiss"]: |
|
raise NotImplementedError(f"Cache type {cache_type} not implemented.") |
|
|
|
prev_end_loc = 0 |
|
long_range_past_key_values = None |
|
faiss_indexes = None |
|
for b_idx in range( |
|
0, input_ids.size(-1), stride |
|
): |
|
end_loc = min(b_idx + max_len, input_ids.size(-1)) |
|
trg_len = end_loc - prev_end_loc |
|
subseq = input_ids[:, b_idx:end_loc].to(self.device) |
|
with torch.no_grad(): |
|
outputs = self.transformer( |
|
subseq, use_cache=True, use_external_mind=False |
|
) |
|
to_cache = [ |
|
(kv[0][:, :, -trg_len:], kv[1][:, :, -trg_len:]) |
|
for kv in outputs.past_key_values |
|
] |
|
long_range_past_key_values, faiss_indexes = self.cache( |
|
to_cache, |
|
cache_type, |
|
long_range_past_key_values=long_range_past_key_values, |
|
faiss_indexes=faiss_indexes, |
|
) |
|
|
|
prev_end_loc = end_loc |
|
if end_loc == input_ids.size(-1): |
|
break |
|
if long_range_past_key_values is not None: |
|
return long_range_past_key_values |
|
else: |
|
return faiss_indexes |
|
|
|
|
|
def cache( |
|
self, |
|
to_cache: list, |
|
cache_type: str = "manual", |
|
long_range_past_key_values: list = None, |
|
faiss_indexes: faiss.IndexFlatIP = None, |
|
max_length_cache=100000, |
|
verbose=False, |
|
): |
|
"""Cache long range attention.""" |
|
if (long_range_past_key_values is not None) & (faiss_indexes is not None): |
|
raise NotImplementedError( |
|
"Using faiss and passing key value pairs manually are mutually exclusive right now." |
|
) |
|
|
|
|
|
if cache_type == "faiss": |
|
one_hot_encodings = ( |
|
F.one_hot(torch.arange(0, self.config.n_heads * self.config.n_layers)) |
|
* 10 |
|
) |
|
|
|
if faiss_indexes is None: |
|
faiss_indexes = ( |
|
faiss.IndexFlatIP( |
|
to_cache[0][0].size(-1) + one_hot_encodings.size(-1) |
|
), |
|
faiss.IndexFlatIP(to_cache[0][0].size(-1) * 2), |
|
) |
|
kn_index, kv_index = faiss_indexes |
|
for l_idx, (k, v) in enumerate(to_cache): |
|
k_n = (k / vector_norm(k, ord=2, dim=-1, keepdim=True)).to("cpu") |
|
|
|
|
|
|
|
k_n = torch.concat( |
|
[ |
|
rearrange(k_n, "b h s d -> b (h s) d", h=self.config.n_heads), |
|
one_hot_encodings[ |
|
self.config.n_heads |
|
* l_idx : self.config.n_heads |
|
* (l_idx + 1) |
|
] |
|
.unsqueeze(0) |
|
.repeat_interleave(repeats=k.size(-2), dim=-2), |
|
], |
|
dim=-1, |
|
) |
|
kn_index.add(k_n.squeeze().numpy()) |
|
|
|
|
|
k = rearrange(k, "b h s d -> b (h s) d", h=self.config.n_heads) |
|
v = rearrange(v, "b h s d -> b (h s) d", h=self.config.n_heads) |
|
kv_index.add( |
|
torch.concat([k.squeeze(), v.squeeze()], dim=1).to("cpu").numpy() |
|
) |
|
else: |
|
|
|
if long_range_past_key_values is None: |
|
long_range_past_key_values = [ |
|
(k.to(self.memory_device), v.to(self.memory_device)) |
|
for k, v in to_cache |
|
] |
|
else: |
|
long_range_past_key_values = [ |
|
( |
|
torch.concat( |
|
[kv[0], to_cache[ind][0].to(self.memory_device)], dim=2 |
|
), |
|
torch.concat( |
|
[kv[1], to_cache[ind][1].to(self.memory_device)], dim=2 |
|
), |
|
) |
|
for ind, kv in enumerate(long_range_past_key_values) |
|
] |
|
if ( |
|
long_range_past_key_values is not None |
|
): |
|
if long_range_past_key_values[0][0].size(-2) > max_length_cache: |
|
long_range_past_key_values = [ |
|
( |
|
kv[0][:, :, -max_length_cache:], |
|
kv[1][:, :, -max_length_cache:], |
|
) |
|
for kv in long_range_past_key_values |
|
] |
|
if verbose: |
|
if cache_type == "faiss": |
|
print(f"{kn_index.ntotal} keys in faiss index") |
|
else: |
|
print(f"{long_range_past_key_values[0][0].size(-2)} cached kvs") |
|
|
|
return ( |
|
long_range_past_key_values, |
|
(kn_index, kv_index) if cache_type == "faiss" else None, |
|
) |
|
|