|
|
|
|
|
|
|
|
|
"""A simple, flexible implementation of a GPT model. |
|
|
|
Inspired by https://github.com/karpathy/minGPT/blob/master/mingpt/model.py |
|
""" |
|
|
|
import math |
|
import warnings |
|
from typing import List, Optional, Tuple, Union |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.linalg import vector_norm |
|
import faiss |
|
from einops import rearrange |
|
from composer.utils import dist |
|
from omegaconf import DictConfig |
|
|
|
from transformers import (PreTrainedModel, PreTrainedTokenizer, |
|
PreTrainedTokenizerFast) |
|
from transformers.modeling_outputs import (BaseModelOutputWithPast, |
|
CausalLMOutputWithPast) |
|
from llmfoundry.models.layers.custom_embedding import SharedEmbedding |
|
from llmfoundry.models.layers.norm import NORM_CLASS_REGISTRY |
|
from llmfoundry.models.utils.param_init_fns import MODEL_INIT_REGISTRY |
|
|
|
from .configuration import ExtendedMPTConfig |
|
from .attention import attn_bias_shape, build_attn_bias |
|
from .blocks import MPTBlock |
|
from .utils import instantiate_from_config |
|
|
|
Tokenizer = Union[PreTrainedTokenizer, PreTrainedTokenizerFast] |
|
|
|
class MPTPreTrainedModel(PreTrainedModel): |
|
config_class = ExtendedMPTConfig |
|
base_model_prefix = 'model' |
|
_no_split_modules = ['MPTBlock'] |
|
|
|
class ExtendedMPTModel(MPTPreTrainedModel): |
|
|
|
def __init__(self, config: ExtendedMPTConfig): |
|
config._validate_config() |
|
super().__init__(config) |
|
|
|
self.attn_impl = config.attn_config['attn_impl'] |
|
self.prefix_lm = config.attn_config['prefix_lm'] |
|
self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id'] |
|
self.alibi = config.attn_config['alibi'] |
|
self.alibi_bias_max = config.attn_config['alibi_bias_max'] |
|
|
|
self.mask_by_sim = config.attn_config['mask_by_sim'] |
|
self.sim_threshold = config.attn_config['sim_threshold'] |
|
self.topk = config.attn_config['topk'] |
|
self.use_active_externalism = config.attn_config['use_active_externalism'] |
|
|
|
self.use_active_externalism_by_layer = config.use_active_externalism_by_layer |
|
|
|
if config.init_device == 'mixed': |
|
if dist.get_local_rank() == 0: |
|
config.init_device = 'cpu' |
|
else: |
|
config.init_device = 'meta' |
|
|
|
if config.norm_type.lower() not in NORM_CLASS_REGISTRY.keys(): |
|
norm_options = ' | '.join(NORM_CLASS_REGISTRY.keys()) |
|
raise NotImplementedError( |
|
f'Requested norm type ({config.norm_type}) is not implemented within this repo (Options: {norm_options}).' |
|
) |
|
norm_class = NORM_CLASS_REGISTRY[config.norm_type.lower()] |
|
|
|
|
|
|
|
self.embedding_fraction = config.embedding_fraction |
|
|
|
self.wte = SharedEmbedding(config.vocab_size, |
|
config.d_model, |
|
device=config.init_device) |
|
if not self.alibi: |
|
self.wpe = torch.nn.Embedding(config.max_seq_len, |
|
config.d_model, |
|
device=config.init_device) |
|
self.emb_drop = nn.Dropout(config.emb_pdrop) |
|
self.blocks = nn.ModuleList([ |
|
MPTBlock( |
|
device=config.init_device, |
|
**config.to_dict(), |
|
) for _ in range(config.n_layers) |
|
]) |
|
self.norm_f = norm_class(config.d_model, device=config.init_device) |
|
|
|
if config.init_device != 'meta': |
|
print( |
|
f'You are using {config.init_device=}, but you can also use config.init_device="meta" with Composer + FSDP for fast initialization.' |
|
) |
|
self.apply(self.param_init_fn) |
|
|
|
self.is_causal = not self.prefix_lm |
|
|
|
|
|
self._attn_bias_initialized = False |
|
self.attn_bias = None |
|
self.attn_bias_shape = attn_bias_shape( |
|
self.attn_impl, |
|
config.n_heads, |
|
config.max_seq_len, |
|
self.alibi, |
|
prefix_lm=self.prefix_lm, |
|
causal=self.is_causal, |
|
use_sequence_id=self.attn_uses_sequence_id, |
|
) |
|
self._attn_bias_ae_initialized = False |
|
self.attn_bias_ae = None |
|
|
|
if self.config.no_bias: |
|
for module in self.modules(): |
|
if hasattr(module, 'bias') and isinstance( |
|
module.bias, nn.Parameter): |
|
if self.config.verbose: |
|
warnings.warn( |
|
f'Removing bias ({module.bias}) from {module}.') |
|
module.register_parameter('bias', None) |
|
|
|
|
|
if config.verbose and config.verbose > 2: |
|
print(self) |
|
if 'verbose' not in self.config.init_config: |
|
self.config.init_config['verbose'] = self.config.verbose |
|
if self.config.init_config['verbose'] > 1: |
|
init_fn_name = self.config.init_config['name'] |
|
warnings.warn(f'Using {init_fn_name} initialization.') |
|
|
|
def get_input_embeddings(self): |
|
return self.wte |
|
|
|
def set_input_embeddings(self, value: nn.Embedding): |
|
self.wte = value |
|
|
|
@torch.no_grad() |
|
def _attn_bias( |
|
self, |
|
device, |
|
dtype, |
|
attention_mask: Optional[torch.ByteTensor] = None, |
|
prefix_mask: Optional[torch.ByteTensor] = None, |
|
sequence_id: Optional[torch.LongTensor] = None, |
|
seq_len: Optional[int] = None, |
|
use_active_externalism:bool=None, |
|
topk=None, |
|
): |
|
if not self._attn_bias_initialized: |
|
if self.attn_bias_shape: |
|
self.attn_bias = torch.zeros(self.attn_bias_shape, |
|
device=device, |
|
dtype=dtype) |
|
self.attn_bias = build_attn_bias( |
|
self.attn_impl, |
|
self.config.n_heads, |
|
self.config.max_seq_len, |
|
device=device, |
|
dtype=dtype, |
|
attn_bias = self.attn_bias, |
|
causal=self.is_causal, |
|
alibi=self.alibi, |
|
alibi_bias_max=self.alibi_bias_max |
|
) |
|
self._attn_bias_initialized = True |
|
|
|
if use_active_externalism: |
|
self.attn_bias_ae = build_attn_bias( |
|
self.attn_impl, |
|
self.config.n_heads, |
|
seq_len, |
|
device=device, |
|
dtype=dtype, |
|
causal=self.is_causal, |
|
alibi=self.alibi, |
|
alibi_bias_max=self.alibi_bias_max, |
|
for_ae=use_active_externalism, |
|
topk=topk |
|
) |
|
|
|
self._attn_bias_ae_initialized = True |
|
|
|
|
|
|
|
if self.attn_impl == 'flash': |
|
return self.attn_bias, attention_mask |
|
|
|
if self.attn_bias is not None: |
|
|
|
|
|
self.attn_bias = self.attn_bias.to(dtype=dtype, device=device) |
|
|
|
attn_bias = self.attn_bias |
|
|
|
if self.attn_bias_ae is not None: |
|
self.attn_bias_ae = self.attn_bias_ae.to(dtype=dtype, device=device) |
|
attn_bias_ae = self.attn_bias_ae |
|
|
|
|
|
if self.prefix_lm: |
|
assert isinstance(attn_bias, torch.Tensor) |
|
assert isinstance(prefix_mask, torch.Tensor) |
|
attn_bias = self._apply_prefix_mask(attn_bias, prefix_mask) |
|
|
|
|
|
if self.attn_uses_sequence_id and sequence_id is not None: |
|
assert isinstance(attn_bias, torch.Tensor) |
|
attn_bias = self._apply_sequence_id(attn_bias, sequence_id) |
|
|
|
|
|
|
|
|
|
if attention_mask is not None: |
|
s_k = attention_mask.shape[-1] |
|
if attn_bias is None: |
|
attn_bias = torch.zeros((1, 1, 1, s_k), |
|
device=device, |
|
dtype=dtype) |
|
else: |
|
|
|
_s_k = max(0, attn_bias.size(-1) - s_k) |
|
attn_bias = attn_bias[:, :, :, _s_k:] |
|
if prefix_mask is not None and (attention_mask.shape != |
|
prefix_mask.shape): |
|
raise ValueError( |
|
f'attention_mask shape={attention_mask.shape} ' + |
|
f'and prefix_mask shape={prefix_mask.shape} are not equal.') |
|
min_val = torch.finfo(attn_bias.dtype).min |
|
attn_bias = attn_bias.masked_fill( |
|
~attention_mask.view(-1, 1, 1, s_k), min_val) |
|
|
|
return attn_bias, attn_bias_ae, None |
|
|
|
def _apply_prefix_mask(self, attn_bias: torch.Tensor, |
|
prefix_mask: torch.Tensor): |
|
s_k, s_q = attn_bias.shape[-2:] |
|
if (s_k != self.config.max_seq_len) or (s_q != self.config.max_seq_len): |
|
raise ValueError( |
|
'attn_bias does not match the expected shape. ' + |
|
f'The last two dimensions should both be {self.config.max_length} ' |
|
+ f'but are {s_k} and {s_q}.') |
|
seq_len = prefix_mask.shape[-1] |
|
if seq_len > self.config.max_seq_len: |
|
raise ValueError( |
|
f'prefix_mask sequence length cannot exceed max_seq_len={self.config.max_seq_len}' |
|
) |
|
|
|
|
|
attn_bias = attn_bias[..., :seq_len, :seq_len] |
|
|
|
|
|
|
|
causal = torch.tril( |
|
torch.ones((seq_len, seq_len), |
|
dtype=torch.bool, |
|
device=prefix_mask.device)).view(1, 1, seq_len, seq_len) |
|
prefix = prefix_mask.view(-1, 1, 1, seq_len) |
|
cannot_attend = ~torch.logical_or(causal, prefix.bool()) |
|
|
|
min_val = torch.finfo(attn_bias.dtype).min |
|
attn_bias = attn_bias.masked_fill(cannot_attend, min_val) |
|
|
|
return attn_bias |
|
|
|
def _apply_sequence_id(self, attn_bias: torch.Tensor, |
|
sequence_id: torch.LongTensor): |
|
seq_len = sequence_id.shape[-1] |
|
if seq_len > self.config.max_seq_len: |
|
raise ValueError( |
|
f'sequence_id sequence length cannot exceed max_seq_len={self.config.max_seq_len}' |
|
) |
|
|
|
|
|
attn_bias = attn_bias[..., :seq_len, :seq_len] |
|
|
|
|
|
|
|
cannot_attend = torch.logical_not( |
|
torch.eq( |
|
sequence_id.view(-1, seq_len, 1), |
|
sequence_id.view(-1, 1, seq_len), |
|
)).unsqueeze(1) |
|
min_val = torch.finfo(attn_bias.dtype).min |
|
attn_bias = attn_bias.masked_fill(cannot_attend, min_val) |
|
|
|
return attn_bias |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor, |
|
past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None, |
|
attention_mask: Optional[torch.ByteTensor] = None, |
|
prefix_mask: Optional[torch.ByteTensor] = None, |
|
sequence_id: Optional[torch.LongTensor] = None, |
|
return_dict: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
use_cache: Optional[bool] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
use_active_externalism:Optional[bool]=None, |
|
long_range_past_key_values:Optional[List[Tuple[torch.FloatTensor]]] = None, |
|
faiss_indexes:Tuple=None, |
|
topk:int=None, |
|
): |
|
return_dict = (return_dict |
|
if return_dict is not None else self.config.return_dict) |
|
use_cache = (use_cache |
|
if use_cache is not None else self.config.use_cache) |
|
use_active_externalism = (use_active_externalism |
|
if use_active_externalism is not None else self.use_active_externalism) |
|
topk = (topk if topk is not None else self.topk) |
|
|
|
if attention_mask is not None: |
|
attention_mask = attention_mask.bool() |
|
|
|
if prefix_mask is not None: |
|
prefix_mask = prefix_mask.bool() |
|
|
|
|
|
|
|
|
|
if not return_dict: |
|
raise NotImplementedError( |
|
'return_dict False is not implemented yet for MPT') |
|
if output_attentions: |
|
if self.attn_impl != 'torch': |
|
raise NotImplementedError( |
|
'output_attentions is not implemented for MPT when using attn_impl `flash` or `triton`.' |
|
) |
|
|
|
if (attention_mask is not None and |
|
attention_mask[:, 0].sum() != attention_mask.shape[0] and |
|
self.training): |
|
raise NotImplementedError( |
|
'MPT does not support training with left padding.') |
|
|
|
if self.prefix_lm and prefix_mask is None: |
|
raise ValueError( |
|
'prefix_mask is a required argument when MPT is configured with prefix_lm=True.' |
|
) |
|
|
|
|
|
if inputs_embeds is not None: |
|
raise NotImplementedError( |
|
'inputs_embeds is not implemented for MPT.') |
|
|
|
if self.training: |
|
if self.attn_uses_sequence_id and sequence_id is None: |
|
raise ValueError( |
|
'sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True ' |
|
+ 'and the model is in train mode.') |
|
elif (self.attn_uses_sequence_id is False) and (sequence_id |
|
is not None): |
|
warnings.warn( |
|
'MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. ' |
|
+ |
|
'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.' |
|
) |
|
|
|
S = input_ids.size(1) |
|
|
|
assert ( |
|
S <= self.config.max_seq_len |
|
), f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}' |
|
|
|
tok_emb = self.wte(input_ids) |
|
if self.alibi: |
|
x = tok_emb |
|
else: |
|
past_position = 0 |
|
if past_key_values is not None: |
|
if len(past_key_values) != self.config.n_layers: |
|
raise ValueError( |
|
f'past_key_values must provide a past_key_value for each attention ' |
|
+ |
|
f'layer in the network ({len(past_key_values)=}; {self.config.n_layers=}).' |
|
) |
|
|
|
|
|
|
|
past_position = past_key_values[0][0].size(1) |
|
if self.attn_impl == 'torch': |
|
past_position = past_key_values[0][0].size(3) |
|
|
|
if S + past_position > self.config.max_seq_len: |
|
raise ValueError( |
|
f'Cannot forward input with past sequence length {past_position} and current sequence length ' |
|
f'{S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}.' |
|
) |
|
pos = torch.arange( |
|
past_position, |
|
S + past_position, |
|
dtype=torch.long, |
|
device=input_ids.device, |
|
).unsqueeze(0) |
|
if attention_mask is not None: |
|
|
|
pos = torch.clamp( |
|
pos - torch.cumsum((~attention_mask).to(torch.int32), |
|
dim=1)[:, past_position:], |
|
min=0, |
|
) |
|
|
|
pos_emb = self.wpe(pos) |
|
x = tok_emb + pos_emb |
|
|
|
if self.embedding_fraction == 1: |
|
x = self.emb_drop(x) |
|
else: |
|
|
|
x_shrunk = (x * self.embedding_fraction) + ( |
|
x.detach() * (1 - self.embedding_fraction)) |
|
assert isinstance(self.emb_drop, nn.Module) |
|
x = self.emb_drop(x_shrunk) |
|
|
|
seq_len = S |
|
if past_key_values is not None: |
|
past_position = past_key_values[0][0].size(-1) |
|
seq_len += past_position |
|
|
|
attn_bias, attn_bias_ae, attention_mask = self._attn_bias( |
|
device=x.device, |
|
dtype=torch.float32, |
|
attention_mask=attention_mask, |
|
prefix_mask=prefix_mask, |
|
sequence_id=sequence_id, |
|
seq_len = seq_len, |
|
use_active_externalism=use_active_externalism, |
|
topk=topk |
|
) |
|
|
|
|
|
if use_cache and past_key_values is None: |
|
past_key_values = [() for _ in range(self.config.n_layers) |
|
] |
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
all_idx = () if output_attentions else None |
|
for b_idx, block in enumerate(self.blocks): |
|
if output_hidden_states: |
|
assert all_hidden_states is not None |
|
all_hidden_states = all_hidden_states + (x,) |
|
past_key_value = (past_key_values[b_idx] |
|
if past_key_values is not None else None) |
|
long_range_past_key_value = (long_range_past_key_values[b_idx] |
|
if (long_range_past_key_values is not None and self.use_active_externalism_by_layer[b_idx] and use_active_externalism is True) else None) |
|
|
|
if long_range_past_key_value is not None and faiss_indexes is not None: |
|
raise NotImplementedError( |
|
'Using faiss and passing key value pairs manually are mutually exclusive right now.') |
|
|
|
x, attn_weights, past_key_value, reshaped_idx = block( |
|
x, |
|
past_key_value=past_key_value, |
|
long_range_past_key_value=long_range_past_key_value, |
|
attn_bias=attn_bias, |
|
attention_mask=attention_mask, |
|
attn_bias_ae=attn_bias_ae, |
|
is_causal=self.is_causal, |
|
topk=topk, |
|
needs_weights=output_attentions, |
|
faiss_indexes=faiss_indexes, |
|
n_layers=self.config.n_layers, |
|
current_layer=b_idx, |
|
mask_by_sim=self.mask_by_sim, |
|
sim_threshold=self.sim_threshold, |
|
) |
|
if past_key_values is not None: |
|
past_key_values[b_idx] = past_key_value |
|
|
|
if output_attentions: |
|
assert all_self_attns is not None |
|
all_self_attns = all_self_attns + (attn_weights,) |
|
|
|
assert all_idx is not None |
|
all_idx = all_idx + (reshaped_idx,) |
|
|
|
x = self.norm_f(x) |
|
|
|
|
|
if output_hidden_states: |
|
assert all_hidden_states is not None |
|
all_hidden_states = all_hidden_states + (x,) |
|
|
|
return BaseModelOutputWithPast( |
|
last_hidden_state=x, |
|
past_key_values=past_key_values, |
|
hidden_states=all_hidden_states, |
|
attentions=(all_self_attns, all_idx), |
|
) |
|
|
|
|
|
def param_init_fn(self, module): |
|
init_fn_name = self.config.init_config['name'] |
|
MODEL_INIT_REGISTRY[init_fn_name]( |
|
module=module, |
|
n_layers=self.config.n_layers, |
|
d_model=self.config.d_model, |
|
**self.config.init_config, |
|
) |
|
|
|
|
|
def fsdp_wrap_fn(self, module): |
|
return isinstance(module, MPTBlock) |
|
|
|
|
|
def activation_checkpointing_fn(self, module): |
|
return isinstance(module, MPTBlock) |
|
|
|
class ExtendedMPTForCausalLM(MPTPreTrainedModel): |
|
|
|
def __init__(self, config:ExtendedMPTConfig, external_memories=None): |
|
if isinstance(config, DictConfig): |
|
config = instantiate_from_config(config) |
|
|
|
super().__init__(config) |
|
if not config.tie_word_embeddings: |
|
raise ValueError( |
|
'MPTForCausalLM only supports tied word embeddings') |
|
|
|
print(f'Instantiating an MPTForCausalLM model from {__file__}') |
|
|
|
self.transformer: ExtendedMPTModel = ExtendedMPTModel(config) |
|
|
|
self.use_active_externalism = config.attn_config['use_active_externalism'] |
|
self.memory_type = config.attn_config['memory_type'] |
|
self._memories = None |
|
self.memory_device = config.memory_device |
|
|
|
for child in self.transformer.children(): |
|
if isinstance(child, torch.nn.ModuleList): |
|
continue |
|
if isinstance(child, torch.nn.Module): |
|
child._fsdp_wrap = True |
|
|
|
|
|
|
|
self.logit_scale = None |
|
if config.logit_scale is not None: |
|
logit_scale = config.logit_scale |
|
if isinstance(logit_scale, str): |
|
if logit_scale == 'inv_sqrt_d_model': |
|
logit_scale = 1 / math.sqrt(config.d_model) |
|
else: |
|
raise ValueError( |
|
f"{logit_scale=} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'." |
|
) |
|
self.logit_scale = logit_scale |
|
|
|
if external_memories is not None: |
|
self._memories = external_memories |
|
self.memories = None |
|
|
|
def set_memories(self, memories): |
|
self.memories = memories |
|
|
|
def empty_memories(self): |
|
self.memories = None |
|
|
|
def get_input_embeddings(self): |
|
return self.transformer.wte |
|
|
|
def set_input_embeddings(self, value): |
|
self.transformer.wte = value |
|
|
|
def get_output_embeddings(self): |
|
return self.transformer.wte |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.transformer.wte = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.transformer = decoder |
|
|
|
def get_decoder(self): |
|
return self.transformer |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor, |
|
past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None, |
|
attention_mask: Optional[torch.ByteTensor] = None, |
|
prefix_mask: Optional[torch.ByteTensor] = None, |
|
sequence_id: Optional[torch.LongTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
return_dict: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
use_cache: Optional[bool] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_active_externalism: Optional[bool]=None, |
|
topk:int=None |
|
): |
|
if self._memories is not None and self.memories is None: |
|
self.memories = self.generate_cache(self._memories, cache_type=self.memory_type) |
|
|
|
return_dict = (return_dict |
|
if return_dict is not None else self.config.return_dict) |
|
use_cache = (use_cache |
|
if use_cache is not None else self.config.use_cache) |
|
use_active_externalism = (use_active_externalism |
|
if use_active_externalism is not None else self.use_active_externalism) |
|
|
|
topk = topk if topk is not None else None |
|
|
|
|
|
if inputs_embeds is not None: |
|
raise NotImplementedError( |
|
'inputs_embeds has to be None (for hf/peft support).') |
|
|
|
|
|
if hasattr(self, "memories") and type(self.memories)==list: |
|
long_range_past_key_values = self.memories |
|
faiss_indexes = None |
|
elif hasattr(self, "memories"): |
|
long_range_past_key_values = None |
|
faiss_indexes = self.memories |
|
else: |
|
long_range_past_key_values = None |
|
faiss_indexes = None |
|
|
|
outputs = self.transformer( |
|
input_ids=input_ids, |
|
past_key_values=past_key_values, |
|
long_range_past_key_values=long_range_past_key_values, |
|
faiss_indexes=faiss_indexes, |
|
attention_mask=attention_mask, |
|
prefix_mask=prefix_mask, |
|
sequence_id=sequence_id, |
|
return_dict=return_dict, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
use_cache=use_cache, |
|
use_active_externalism=use_active_externalism, |
|
topk=topk |
|
) |
|
|
|
|
|
|
|
logits = self.transformer.wte( |
|
outputs.last_hidden_state.to(self.transformer.wte.weight.device), |
|
True, |
|
) |
|
|
|
if self.logit_scale is not None: |
|
if self.logit_scale == 0: |
|
warnings.warn( |
|
f'Multiplying logits by {self.logit_scale=}. This will produce uniform (uninformative) outputs.' |
|
) |
|
logits *= self.logit_scale |
|
|
|
loss = None |
|
if labels is not None: |
|
_labels = torch.roll(labels, shifts=-1) |
|
_labels[:, -1] = -100 |
|
loss = F.cross_entropy( |
|
logits.view(-1, logits.size(-1)), |
|
_labels.to(logits.device).view(-1), |
|
) |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
def param_init_fn(self, module): |
|
init_fn_name = self.config.init_config['name'] |
|
MODEL_INIT_REGISTRY[init_fn_name]( |
|
module=module, |
|
n_layers=self.config.n_layers, |
|
d_model=self.config.d_model, |
|
**self.config.init_config, |
|
) |
|
|
|
|
|
def fsdp_wrap_fn(self, module): |
|
return isinstance(module, MPTBlock) |
|
|
|
|
|
def activation_checkpointing_fn(self, module): |
|
return isinstance(module, MPTBlock) |
|
|
|
def generate_cache(self, |
|
input_ids:torch.LongTensor, |
|
stride:int=512, |
|
max_len:int=2048, |
|
cache_type:str='manual'): |
|
if cache_type not in ['manual', 'faiss']: |
|
raise NotImplementedError(f"Cache type {cache_type} not implemented.") |
|
|
|
prev_end_loc=0 |
|
long_range_past_key_values = None |
|
faiss_indexes= None |
|
for b_idx in range(0, input_ids.size(-1), stride): |
|
end_loc = min(b_idx + max_len, input_ids.size(-1)) |
|
trg_len = end_loc - prev_end_loc |
|
subseq = input_ids[:, b_idx:end_loc].to(self.device) |
|
with torch.no_grad(): |
|
outputs = self.transformer(subseq, use_cache=True, use_active_externalism=False) |
|
to_cache = [( |
|
kv[0][:,:,:,-trg_len:], |
|
kv[1][:,:,-trg_len:]) |
|
for kv in outputs.past_key_values |
|
] |
|
long_range_past_key_values, faiss_indexes = self.cache(to_cache, cache_type, long_range_past_key_values=long_range_past_key_values, faiss_indexes=faiss_indexes) |
|
|
|
prev_end_loc = end_loc |
|
if end_loc == input_ids.size(-1): |
|
break |
|
if long_range_past_key_values is not None: |
|
return long_range_past_key_values |
|
else: |
|
return faiss_indexes |
|
|
|
def cache(self, |
|
to_cache:List, |
|
cache_type:str='manual', |
|
long_range_past_key_values:List=None, |
|
faiss_indexes:faiss.IndexFlatIP=None, |
|
max_length_cache=100000, |
|
verbose=False): |
|
if long_range_past_key_values is not None and faiss_indexes is not None: |
|
raise NotImplementedError("Using faiss and passing key value pairs manually are mutually exclusive right now.") |
|
|
|
if cache_type=='faiss': |
|
one_hot_encodings = F.one_hot(torch.arange(0, self.config.n_heads*self.config.n_layers))*10 |
|
if faiss_indexes is None: |
|
faiss_indexes = (faiss.IndexFlatIP(to_cache[0][0].size(-2)+one_hot_encodings.size(-1)), faiss.IndexFlatIP(to_cache[0][1].size(-1)*2)) |
|
kn_index, kv_index = faiss_indexes |
|
for b_idx, (k, v) in enumerate(to_cache): |
|
k_n = (k/vector_norm(k, ord=2, dim=-2, keepdim=True)).to('cpu') |
|
k_n = torch.concat([rearrange(k_n, 'b h d s -> b (h s) d', h=self.config.n_heads), one_hot_encodings[self.config.n_heads*b_idx:self.config.n_heads*(b_idx+1)].unsqueeze(0).repeat_interleave(repeats=k.size(-1), dim=-2)], dim=-1) |
|
kn_index.add(k_n.squeeze().numpy()) |
|
|
|
k= rearrange(k, 'b h d s -> b (h s) d', h=self.config.n_heads) |
|
v= rearrange(v, 'b h s d -> b (h s) d', h=self.config.n_heads) |
|
kv_index.add(torch.concat([v.squeeze(), k.squeeze()], dim=1).to('cpu').numpy()) |
|
else: |
|
if long_range_past_key_values is None: |
|
long_range_past_key_values = [(k.to(self.memory_device),v.to(self.memory_device)) for k,v in to_cache] |
|
else: |
|
long_range_past_key_values = [ |
|
( |
|
torch.concat([kv[0], to_cache[ind][0].to(self.memory_device)], dim=3), |
|
torch.concat([kv[1], to_cache[ind][1].to(self.memory_device)], dim=2) |
|
) |
|
for ind, kv in enumerate(long_range_past_key_values) |
|
] |
|
if long_range_past_key_values is not None: |
|
if long_range_past_key_values[0][0].size(-1) > max_length_cache: |
|
long_range_past_key_values = [ |
|
( |
|
kv[0][:, :, :, -max_length_cache:], |
|
kv[1][:, :, -max_length_cache:] |
|
) |
|
for kv in long_range_past_key_values] |
|
if verbose: |
|
if cache_type == 'faiss': |
|
print(f"{kn_index.ntotal} keys in faiss index") |
|
else: |
|
print(f"{long_range_past_key_values[0][0].size(-1)} cached kvs") |
|
|
|
return long_range_past_key_values, (kn_index, kv_index) if cache_type == 'faiss' else None |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids, |
|
past_key_values=None, |
|
inputs_embeds=None, |
|
**kwargs, |
|
): |
|
if inputs_embeds is not None: |
|
raise NotImplementedError( |
|
'inputs_embeds is not implemented for MPT yet') |
|
|
|
attention_mask = kwargs['attention_mask'].bool() |
|
if attention_mask[:, -1].sum() != attention_mask.shape[0]: |
|
raise NotImplementedError( |
|
'MPT does not support generation with right padding.') |
|
|
|
if self.transformer.attn_uses_sequence_id and self.training: |
|
sequence_id = torch.zeros_like(input_ids[:1]) |
|
else: |
|
sequence_id = None |
|
|
|
if past_key_values is not None: |
|
input_ids = input_ids[:, -1].unsqueeze(-1) |
|
|
|
if self.transformer.prefix_lm: |
|
|
|
prefix_mask = torch.ones_like(attention_mask) |
|
|
|
if kwargs.get('use_cache') == False: |
|
raise NotImplementedError( |
|
'MPT with prefix_lm=True does not support use_cache=False.') |
|
else: |
|
prefix_mask = None |
|
|
|
return { |
|
'input_ids': input_ids, |
|
'attention_mask': attention_mask, |
|
'prefix_mask': prefix_mask, |
|
'sequence_id': sequence_id, |
|
'past_key_values': past_key_values, |
|
'use_cache': kwargs.get('use_cache', True), |
|
'use_active_externalism': kwargs.get('use_active_externalism'), |
|
'topk': kwargs.get('topk', None), |
|
} |
|
|
|
@staticmethod |
|
def _reorder_cache(past_key_values, beam_idx): |
|
"""Used by HuggingFace generate when using beam search with kv-caching. |
|
|
|
See https://github.com/huggingface/transformers/blob/3ec7a47664ebe40c40f4b722f6bb1cd30c3821ec/src/transformers/models/gpt2/modeling_gpt2.py#L1122-L1133 |
|
for an example in transformers. |
|
""" |
|
reordered_past = [] |
|
for layer_past in past_key_values: |
|
reordered_past += [ |
|
tuple( |
|
past_state.index_select(0, beam_idx) |
|
for past_state in layer_past) |
|
] |
|
return reordered_past |