# Adapted from https://github.com/mosaicml/llm-foundry # Classes changed: MPTModel, MPTForCausalLM # SPDX-License-Identifier: Apache-2.0 """A simple, flexible implementation of a GPT model. Inspired by https://github.com/karpathy/minGPT/blob/master/mingpt/model.py """ import math import warnings from typing import List, Optional, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F from torch.linalg import vector_norm import faiss from einops import rearrange from composer.utils import dist from omegaconf import DictConfig from transformers import (PreTrainedModel, PreTrainedTokenizer, PreTrainedTokenizerFast) from transformers.modeling_outputs import (BaseModelOutputWithPast, CausalLMOutputWithPast) from llmfoundry.models.layers.custom_embedding import SharedEmbedding from llmfoundry.models.layers.norm import NORM_CLASS_REGISTRY from llmfoundry.models.utils.param_init_fns import MODEL_INIT_REGISTRY from .configuration import ExtendedMPTConfig from .attention import attn_bias_shape, build_attn_bias from .blocks import MPTBlock from .utils import instantiate_from_config Tokenizer = Union[PreTrainedTokenizer, PreTrainedTokenizerFast] class MPTPreTrainedModel(PreTrainedModel): config_class = ExtendedMPTConfig base_model_prefix = 'model' _no_split_modules = ['MPTBlock'] class ExtendedMPTModel(MPTPreTrainedModel): def __init__(self, config: ExtendedMPTConfig): config._validate_config() super().__init__(config) self.attn_impl = config.attn_config['attn_impl'] self.prefix_lm = config.attn_config['prefix_lm'] self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id'] self.alibi = config.attn_config['alibi'] self.alibi_bias_max = config.attn_config['alibi_bias_max'] self.mask_by_sim = config.attn_config['mask_by_sim'] self.sim_threshold = config.attn_config['sim_threshold'] self.topk = config.attn_config['topk'] self.use_active_externalism = config.attn_config['use_active_externalism'] self.use_active_externalism_by_layer = config.use_active_externalism_by_layer if config.init_device == 'mixed': if dist.get_local_rank() == 0: config.init_device = 'cpu' else: config.init_device = 'meta' if config.norm_type.lower() not in NORM_CLASS_REGISTRY.keys(): norm_options = ' | '.join(NORM_CLASS_REGISTRY.keys()) raise NotImplementedError( f'Requested norm type ({config.norm_type}) is not implemented within this repo (Options: {norm_options}).' ) norm_class = NORM_CLASS_REGISTRY[config.norm_type.lower()] # CogView (https://arxiv.org/abs/2105.13290) and GLM-130B (https://arxiv.org/abs/2210.02414) # both report this helping with stabilizing training self.embedding_fraction = config.embedding_fraction self.wte = SharedEmbedding(config.vocab_size, config.d_model, device=config.init_device) if not self.alibi: self.wpe = torch.nn.Embedding(config.max_seq_len, config.d_model, device=config.init_device) self.emb_drop = nn.Dropout(config.emb_pdrop) self.blocks = nn.ModuleList([ MPTBlock( device=config.init_device, **config.to_dict(), ) for _ in range(config.n_layers) ]) self.norm_f = norm_class(config.d_model, device=config.init_device) if config.init_device != 'meta': print( f'You are using {config.init_device=}, but you can also use config.init_device="meta" with Composer + FSDP for fast initialization.' ) self.apply(self.param_init_fn) self.is_causal = not self.prefix_lm # define attn mask self._attn_bias_initialized = False self.attn_bias = None self.attn_bias_shape = attn_bias_shape( self.attn_impl, config.n_heads, config.max_seq_len, self.alibi, prefix_lm=self.prefix_lm, causal=self.is_causal, use_sequence_id=self.attn_uses_sequence_id, ) self._attn_bias_ae_initialized = False #for active externalism self.attn_bias_ae = None if self.config.no_bias: for module in self.modules(): if hasattr(module, 'bias') and isinstance( module.bias, nn.Parameter): if self.config.verbose: warnings.warn( f'Removing bias ({module.bias}) from {module}.') module.register_parameter('bias', None) # Print verbose info if config.verbose and config.verbose > 2: print(self) if 'verbose' not in self.config.init_config: self.config.init_config['verbose'] = self.config.verbose if self.config.init_config['verbose'] > 1: init_fn_name = self.config.init_config['name'] warnings.warn(f'Using {init_fn_name} initialization.') def get_input_embeddings(self): return self.wte def set_input_embeddings(self, value: nn.Embedding): self.wte = value @torch.no_grad() def _attn_bias( self, device, dtype, attention_mask: Optional[torch.ByteTensor] = None, prefix_mask: Optional[torch.ByteTensor] = None, sequence_id: Optional[torch.LongTensor] = None, seq_len: Optional[int] = None, use_active_externalism:bool=None, topk=None, ): if not self._attn_bias_initialized: if self.attn_bias_shape: self.attn_bias = torch.zeros(self.attn_bias_shape, device=device, dtype=dtype) self.attn_bias = build_attn_bias( self.attn_impl, self.config.n_heads, self.config.max_seq_len, device=device, dtype=dtype, attn_bias = self.attn_bias, causal=self.is_causal, alibi=self.alibi, alibi_bias_max=self.alibi_bias_max ) self._attn_bias_initialized = True if use_active_externalism: #for active externalism, init every time since seq_len changes self.attn_bias_ae = build_attn_bias( self.attn_impl, self.config.n_heads, seq_len, device=device, dtype=dtype, causal=self.is_causal, alibi=self.alibi, alibi_bias_max=self.alibi_bias_max, for_ae=use_active_externalism, topk=topk ) self._attn_bias_ae_initialized = True # flash does not support prefix_lm and will incorporate any # attention_mask inside the attention module if self.attn_impl == 'flash': return self.attn_bias, attention_mask if self.attn_bias is not None: # .to(*args, **kwargs) is a no-op if tensor is already on # specified device or of specificed dtype self.attn_bias = self.attn_bias.to(dtype=dtype, device=device) attn_bias = self.attn_bias if self.attn_bias_ae is not None: #for active externalism self.attn_bias_ae = self.attn_bias_ae.to(dtype=dtype, device=device) attn_bias_ae = self.attn_bias_ae # If using torch or triton, we incorporate the prefix_mask (if appropriate) if self.prefix_lm: assert isinstance(attn_bias, torch.Tensor) # pyright assert isinstance(prefix_mask, torch.Tensor) # pyright attn_bias = self._apply_prefix_mask(attn_bias, prefix_mask) # If using torch or triton, we incorporate sequence_id (if appropriate) if self.attn_uses_sequence_id and sequence_id is not None: assert isinstance(attn_bias, torch.Tensor) # pyright attn_bias = self._apply_sequence_id(attn_bias, sequence_id) # If using torch or triton, we incorporate attention_mask. This will output # None in place of attention_mask since it will not be further needed in the # attention modules. if attention_mask is not None: s_k = attention_mask.shape[-1] if attn_bias is None: attn_bias = torch.zeros((1, 1, 1, s_k), device=device, dtype=dtype) else: # clamp to 0 necessary for torch 2.0 compile() _s_k = max(0, attn_bias.size(-1) - s_k) attn_bias = attn_bias[:, :, :, _s_k:] if prefix_mask is not None and (attention_mask.shape != prefix_mask.shape): raise ValueError( f'attention_mask shape={attention_mask.shape} ' + f'and prefix_mask shape={prefix_mask.shape} are not equal.') min_val = torch.finfo(attn_bias.dtype).min attn_bias = attn_bias.masked_fill( ~attention_mask.view(-1, 1, 1, s_k), min_val) return attn_bias, attn_bias_ae, None def _apply_prefix_mask(self, attn_bias: torch.Tensor, prefix_mask: torch.Tensor): s_k, s_q = attn_bias.shape[-2:] if (s_k != self.config.max_seq_len) or (s_q != self.config.max_seq_len): raise ValueError( 'attn_bias does not match the expected shape. ' + f'The last two dimensions should both be {self.config.max_length} ' + f'but are {s_k} and {s_q}.') seq_len = prefix_mask.shape[-1] if seq_len > self.config.max_seq_len: raise ValueError( f'prefix_mask sequence length cannot exceed max_seq_len={self.config.max_seq_len}' ) # select seq_len subset of attn mask attn_bias = attn_bias[..., :seq_len, :seq_len] # Mix the causal max and the bidirectional mask to get the full # allowable attention (i.e. full = not accounting for padding yet) causal = torch.tril( torch.ones((seq_len, seq_len), dtype=torch.bool, device=prefix_mask.device)).view(1, 1, seq_len, seq_len) prefix = prefix_mask.view(-1, 1, 1, seq_len) cannot_attend = ~torch.logical_or(causal, prefix.bool()) min_val = torch.finfo(attn_bias.dtype).min attn_bias = attn_bias.masked_fill(cannot_attend, min_val) return attn_bias def _apply_sequence_id(self, attn_bias: torch.Tensor, sequence_id: torch.LongTensor): seq_len = sequence_id.shape[-1] if seq_len > self.config.max_seq_len: raise ValueError( f'sequence_id sequence length cannot exceed max_seq_len={self.config.max_seq_len}' ) # select seq_len subset of attn mask attn_bias = attn_bias[..., :seq_len, :seq_len] # Restrict attention to tokens that share the same value # in sequence_id cannot_attend = torch.logical_not( torch.eq( sequence_id.view(-1, seq_len, 1), sequence_id.view(-1, 1, seq_len), )).unsqueeze(1) min_val = torch.finfo(attn_bias.dtype).min attn_bias = attn_bias.masked_fill(cannot_attend, min_val) return attn_bias def forward( self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None, attention_mask: Optional[torch.ByteTensor] = None, prefix_mask: Optional[torch.ByteTensor] = None, sequence_id: Optional[torch.LongTensor] = None, return_dict: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, use_cache: Optional[bool] = None, inputs_embeds: Optional[torch.Tensor] = None, use_active_externalism:Optional[bool]=None, long_range_past_key_values:Optional[List[Tuple[torch.FloatTensor]]] = None, faiss_indexes:Tuple=None, topk:int=None, ): return_dict = (return_dict if return_dict is not None else self.config.return_dict) use_cache = (use_cache if use_cache is not None else self.config.use_cache) use_active_externalism = (use_active_externalism if use_active_externalism is not None else self.use_active_externalism) topk = (topk if topk is not None else self.topk) if attention_mask is not None: attention_mask = attention_mask.bool() if prefix_mask is not None: prefix_mask = prefix_mask.bool() # These args are passed in by keyword in huggingface's generate function # https://github.com/huggingface/transformers/blob/68287689f2f0d8b7063c400230b3766987abf18d/src/transformers/generation/utils.py#L2201-L2206 # but have not yet been fully implemented in MPTModel if not return_dict: raise NotImplementedError( 'return_dict False is not implemented yet for MPT') if output_attentions: if self.attn_impl != 'torch': raise NotImplementedError( 'output_attentions is not implemented for MPT when using attn_impl `flash` or `triton`.' ) if (attention_mask is not None and attention_mask[:, 0].sum() != attention_mask.shape[0] and self.training): raise NotImplementedError( 'MPT does not support training with left padding.') if self.prefix_lm and prefix_mask is None: raise ValueError( 'prefix_mask is a required argument when MPT is configured with prefix_lm=True.' ) # Raise a not implemented error if input_embeds is not None (this is an arg in huggingface transformers and we need to support it for PEFT) if inputs_embeds is not None: raise NotImplementedError( 'inputs_embeds is not implemented for MPT.') if self.training: if self.attn_uses_sequence_id and sequence_id is None: raise ValueError( 'sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True ' + 'and the model is in train mode.') elif (self.attn_uses_sequence_id is False) and (sequence_id is not None): warnings.warn( 'MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. ' + 'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.' ) S = input_ids.size(1) assert ( S <= self.config.max_seq_len ), f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}' tok_emb = self.wte(input_ids) # type: ignore if self.alibi: x = tok_emb else: past_position = 0 if past_key_values is not None: if len(past_key_values) != self.config.n_layers: raise ValueError( f'past_key_values must provide a past_key_value for each attention ' + f'layer in the network ({len(past_key_values)=}; {self.config.n_layers=}).' ) # For attn_impl: triton and flash the past key tensor spec is (batch, seq, dim). # For attn_impl: torch the past key tensor spec is (batch, heads, head_dim, seq). # Here we shift position embedding using the `seq` dim of the past key past_position = past_key_values[0][0].size(1) if self.attn_impl == 'torch': past_position = past_key_values[0][0].size(3) if S + past_position > self.config.max_seq_len: raise ValueError( f'Cannot forward input with past sequence length {past_position} and current sequence length ' f'{S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}.' ) pos = torch.arange( past_position, S + past_position, dtype=torch.long, device=input_ids.device, ).unsqueeze(0) if attention_mask is not None: # adjust the position indices to account for padding tokens pos = torch.clamp( pos - torch.cumsum((~attention_mask).to(torch.int32), dim=1)[:, past_position:], min=0, ) pos_emb = self.wpe(pos) # type: ignore x = tok_emb + pos_emb if self.embedding_fraction == 1: x = self.emb_drop(x) # type: ignore else: # this implementation is proposed on page 7 of the GLM-130B paper https://arxiv.org/abs/2210.02414 x_shrunk = (x * self.embedding_fraction) + ( x.detach() * (1 - self.embedding_fraction)) assert isinstance(self.emb_drop, nn.Module) # pyright x = self.emb_drop(x_shrunk) seq_len = S #for active externalism if past_key_values is not None: past_position = past_key_values[0][0].size(-1) seq_len += past_position attn_bias, attn_bias_ae, attention_mask = self._attn_bias( device=x.device, dtype=torch.float32, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, seq_len = seq_len, use_active_externalism=use_active_externalism, topk=topk ) # initialize the past key values cache if it should be used if use_cache and past_key_values is None: past_key_values = [() for _ in range(self.config.n_layers) ] # type: ignore all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_idx = () if output_attentions else None for b_idx, block in enumerate(self.blocks): # type: ignore if output_hidden_states: assert all_hidden_states is not None # pyright all_hidden_states = all_hidden_states + (x,) past_key_value = (past_key_values[b_idx] if past_key_values is not None else None) long_range_past_key_value = (long_range_past_key_values[b_idx] if (long_range_past_key_values is not None and self.use_active_externalism_by_layer[b_idx] and use_active_externalism is True) else None) if long_range_past_key_value is not None and faiss_indexes is not None: raise NotImplementedError( 'Using faiss and passing key value pairs manually are mutually exclusive right now.') x, attn_weights, past_key_value, reshaped_idx = block( x, past_key_value=past_key_value, long_range_past_key_value=long_range_past_key_value, attn_bias=attn_bias, attention_mask=attention_mask, attn_bias_ae=attn_bias_ae, is_causal=self.is_causal, topk=topk, needs_weights=output_attentions, faiss_indexes=faiss_indexes, n_layers=self.config.n_layers, current_layer=b_idx, mask_by_sim=self.mask_by_sim, sim_threshold=self.sim_threshold, ) if past_key_values is not None: past_key_values[b_idx] = past_key_value if output_attentions: assert all_self_attns is not None # pyright all_self_attns = all_self_attns + (attn_weights,) assert all_idx is not None all_idx = all_idx + (reshaped_idx,) x = self.norm_f(x) # type: ignore # add hidden states from the last decoder layer if output_hidden_states: assert all_hidden_states is not None # pyright all_hidden_states = all_hidden_states + (x,) return BaseModelOutputWithPast( last_hidden_state=x, past_key_values=past_key_values, hidden_states=all_hidden_states, attentions=(all_self_attns, all_idx), #return reshaped_idx for active externalism ) # Param Initialization, needed for device='meta' fast initialization def param_init_fn(self, module): init_fn_name = self.config.init_config['name'] MODEL_INIT_REGISTRY[init_fn_name]( module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config, ) # FSDP Wrap function def fsdp_wrap_fn(self, module): return isinstance(module, MPTBlock) # Activation Checkpointing def activation_checkpointing_fn(self, module): return isinstance(module, MPTBlock) class ExtendedMPTForCausalLM(MPTPreTrainedModel): def __init__(self, config:ExtendedMPTConfig, external_memories=None): if isinstance(config, DictConfig): config = instantiate_from_config(config) super().__init__(config) if not config.tie_word_embeddings: raise ValueError( 'MPTForCausalLM only supports tied word embeddings') print(f'Instantiating an MPTForCausalLM model from {__file__}') self.transformer: ExtendedMPTModel = ExtendedMPTModel(config) self.use_active_externalism = config.attn_config['use_active_externalism'] self.memory_type = config.attn_config['memory_type'] self._memories = None self.memory_device = config.memory_device for child in self.transformer.children(): if isinstance(child, torch.nn.ModuleList): continue if isinstance(child, torch.nn.Module): child._fsdp_wrap = True # enables scaling output logits; similar to a softmax "temperature" # PaLM paper uses scale 1/sqrt(config.d_model) self.logit_scale = None if config.logit_scale is not None: logit_scale = config.logit_scale if isinstance(logit_scale, str): if logit_scale == 'inv_sqrt_d_model': logit_scale = 1 / math.sqrt(config.d_model) else: raise ValueError( f"{logit_scale=} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'." ) self.logit_scale = logit_scale if external_memories is not None: self._memories = external_memories self.memories = None def set_memories(self, memories): self.memories = memories def empty_memories(self): self.memories = None def get_input_embeddings(self): return self.transformer.wte def set_input_embeddings(self, value): self.transformer.wte = value def get_output_embeddings(self): return self.transformer.wte def set_output_embeddings(self, new_embeddings): self.transformer.wte = new_embeddings def set_decoder(self, decoder): self.transformer = decoder def get_decoder(self): return self.transformer def forward( self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None, attention_mask: Optional[torch.ByteTensor] = None, prefix_mask: Optional[torch.ByteTensor] = None, sequence_id: Optional[torch.LongTensor] = None, labels: Optional[torch.LongTensor] = None, return_dict: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, use_cache: Optional[bool] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_active_externalism: Optional[bool]=None, topk:int=None ): if self._memories is not None and self.memories is None: #init memories once on first call self.memories = self.generate_cache(self._memories, cache_type=self.memory_type) return_dict = (return_dict if return_dict is not None else self.config.return_dict) use_cache = (use_cache if use_cache is not None else self.config.use_cache) use_active_externalism = (use_active_externalism if use_active_externalism is not None else self.use_active_externalism) topk = topk if topk is not None else None # if input_embeds is not none, raise a not implemented error if inputs_embeds is not None: raise NotImplementedError( 'inputs_embeds has to be None (for hf/peft support).') # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) if hasattr(self, "memories") and type(self.memories)==list: long_range_past_key_values = self.memories faiss_indexes = None elif hasattr(self, "memories"): long_range_past_key_values = None faiss_indexes = self.memories else: long_range_past_key_values = None faiss_indexes = None outputs = self.transformer( input_ids=input_ids, past_key_values=past_key_values, long_range_past_key_values=long_range_past_key_values, faiss_indexes=faiss_indexes, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache, use_active_externalism=use_active_externalism, topk=topk ) # move outputs to same device as weights for token embedding # needed to support HF `device_map` logits = self.transformer.wte( outputs.last_hidden_state.to(self.transformer.wte.weight.device), True, ) if self.logit_scale is not None: if self.logit_scale == 0: warnings.warn( f'Multiplying logits by {self.logit_scale=}. This will produce uniform (uninformative) outputs.' ) logits *= self.logit_scale loss = None if labels is not None: _labels = torch.roll(labels, shifts=-1) _labels[:, -1] = -100 loss = F.cross_entropy( logits.view(-1, logits.size(-1)), _labels.to(logits.device).view(-1), ) return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Param Initialization, needed for device='meta' fast initialization def param_init_fn(self, module): init_fn_name = self.config.init_config['name'] MODEL_INIT_REGISTRY[init_fn_name]( module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config, ) # FSDP Wrap function def fsdp_wrap_fn(self, module): return isinstance(module, MPTBlock) # Activation Checkpointing def activation_checkpointing_fn(self, module): return isinstance(module, MPTBlock) def generate_cache(self, input_ids:torch.LongTensor, stride:int=512, max_len:int=2048, cache_type:str='manual'): if cache_type not in ['manual', 'faiss']: raise NotImplementedError(f"Cache type {cache_type} not implemented.") prev_end_loc=0 long_range_past_key_values = None faiss_indexes= None for b_idx in range(0, input_ids.size(-1), stride): #generate kv-pairs using stride end_loc = min(b_idx + max_len, input_ids.size(-1)) trg_len = end_loc - prev_end_loc subseq = input_ids[:, b_idx:end_loc].to(self.device) with torch.no_grad(): outputs = self.transformer(subseq, use_cache=True, use_active_externalism=False) to_cache = [( kv[0][:,:,:,-trg_len:], kv[1][:,:,-trg_len:]) for kv in outputs.past_key_values ] long_range_past_key_values, faiss_indexes = self.cache(to_cache, cache_type, long_range_past_key_values=long_range_past_key_values, faiss_indexes=faiss_indexes) prev_end_loc = end_loc if end_loc == input_ids.size(-1): break if long_range_past_key_values is not None: return long_range_past_key_values else: return faiss_indexes def cache(self, to_cache:List, cache_type:str='manual', long_range_past_key_values:List=None, faiss_indexes:faiss.IndexFlatIP=None, max_length_cache=100000, verbose=False): if long_range_past_key_values is not None and faiss_indexes is not None: raise NotImplementedError("Using faiss and passing key value pairs manually are mutually exclusive right now.") if cache_type=='faiss': #add one-hot encoding to match layer, head indices one_hot_encodings = F.one_hot(torch.arange(0, self.config.n_heads*self.config.n_layers))*10 if faiss_indexes is None: faiss_indexes = (faiss.IndexFlatIP(to_cache[0][0].size(-2)+one_hot_encodings.size(-1)), faiss.IndexFlatIP(to_cache[0][1].size(-1)*2)) kn_index, kv_index = faiss_indexes for b_idx, (k, v) in enumerate(to_cache): k_n = (k/vector_norm(k, ord=2, dim=-2, keepdim=True)).to('cpu') k_n = torch.concat([rearrange(k_n, 'b h d s -> b (h s) d', h=self.config.n_heads), one_hot_encodings[self.config.n_heads*b_idx:self.config.n_heads*(b_idx+1)].unsqueeze(0).repeat_interleave(repeats=k.size(-1), dim=-2)], dim=-1) kn_index.add(k_n.squeeze().numpy()) k= rearrange(k, 'b h d s -> b (h s) d', h=self.config.n_heads) v= rearrange(v, 'b h s d -> b (h s) d', h=self.config.n_heads) kv_index.add(torch.concat([v.squeeze(), k.squeeze()], dim=1).to('cpu').numpy()) else: if long_range_past_key_values is None: long_range_past_key_values = [(k.to(self.memory_device),v.to(self.memory_device)) for k,v in to_cache] else: long_range_past_key_values = [ ( torch.concat([kv[0], to_cache[ind][0].to(self.memory_device)], dim=3), torch.concat([kv[1], to_cache[ind][1].to(self.memory_device)], dim=2) ) for ind, kv in enumerate(long_range_past_key_values) ] if long_range_past_key_values is not None: #set a limit on manual memory length if long_range_past_key_values[0][0].size(-1) > max_length_cache: long_range_past_key_values = [ ( kv[0][:, :, :, -max_length_cache:], kv[1][:, :, -max_length_cache:] ) for kv in long_range_past_key_values] if verbose: if cache_type == 'faiss': print(f"{kn_index.ntotal} keys in faiss index") else: print(f"{long_range_past_key_values[0][0].size(-1)} cached kvs") return long_range_past_key_values, (kn_index, kv_index) if cache_type == 'faiss' else None def prepare_inputs_for_generation( self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs, ): if inputs_embeds is not None: raise NotImplementedError( 'inputs_embeds is not implemented for MPT yet') attention_mask = kwargs['attention_mask'].bool() if attention_mask[:, -1].sum() != attention_mask.shape[0]: raise NotImplementedError( 'MPT does not support generation with right padding.') if self.transformer.attn_uses_sequence_id and self.training: sequence_id = torch.zeros_like(input_ids[:1]) else: sequence_id = None if past_key_values is not None: input_ids = input_ids[:, -1].unsqueeze(-1) if self.transformer.prefix_lm: # Leverage a convenience of sequential generation! prefix_mask = torch.ones_like(attention_mask) # This requires that we're using the cache if kwargs.get('use_cache') == False: raise NotImplementedError( 'MPT with prefix_lm=True does not support use_cache=False.') else: prefix_mask = None return { 'input_ids': input_ids, 'attention_mask': attention_mask, 'prefix_mask': prefix_mask, 'sequence_id': sequence_id, 'past_key_values': past_key_values, 'use_cache': kwargs.get('use_cache', True), 'use_active_externalism': kwargs.get('use_active_externalism'), #add a few more kwargs for active externalism 'topk': kwargs.get('topk', None), } @staticmethod def _reorder_cache(past_key_values, beam_idx): """Used by HuggingFace generate when using beam search with kv-caching. See https://github.com/huggingface/transformers/blob/3ec7a47664ebe40c40f4b722f6bb1cd30c3821ec/src/transformers/models/gpt2/modeling_gpt2.py#L1122-L1133 for an example in transformers. """ reordered_past = [] for layer_past in past_key_values: reordered_past += [ tuple( past_state.index_select(0, beam_idx) for past_state in layer_past) ] return reordered_past