File size: 52,568 Bytes
f8a6b8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b4bbd1
f8a6b8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd5ca23
f8a6b8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73e59c4
f8a6b8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73e59c4
f8a6b8e
73e59c4
f8a6b8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
# Copyright 2023 HuggingFace Inc. team and MosaicML NLP team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# This code has been adapted from Mosaic ML and Huggingface and inherits the above lisence.
# The original code can be found here:
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
# We annotate the edited code below with 'EM' comments to indicate where we have made changes.
"""PyTorch MPT model."""

import math
from typing import Optional, Tuple, Union

import faiss
import numpy as np
import torch
import torch.utils.checkpoint
from einops import rearrange
from torch import nn
from torch.linalg import vector_norm
from torch.nn import CrossEntropyLoss, LayerNorm
from torch.nn import functional as F
from transformers.file_utils import (
    add_code_sample_docstrings,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
)
from transformers.modeling_outputs import (
    BaseModelOutputWithPastAndCrossAttentions,
    CausalLMOutputWithCrossAttentions,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging

from .configuration import ExtendedMptConfig

logger = logging.get_logger(__name__)

_CHECKPOINT_FOR_DOC = "mosaicml/mpt-7b"
_CONFIG_FOR_DOC = "MptConfig"


# Copied from transformers.models.bloom.modeling_bloom._make_causal_mask
def _make_causal_mask(
    input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int
) -> torch.BoolTensor:
    """
    Make causal mask used for self-attention.
    """
    batch_size, target_length = input_ids_shape
    mask = torch.empty(
        (target_length, target_length + past_key_values_length),
        dtype=torch.bool,
        device=device,
    )
    # ONNX doesn't support `torch.Tensor.triu` properly, thus we use this workaround
    seq_ids = torch.arange(target_length, device=device)
    mask[:, past_key_values_length:] = seq_ids[:, None] < seq_ids[None, :]

    if past_key_values_length > 0:
        mask[:, :past_key_values_length] = False

    expanded_mask = mask[None, None, :, :].expand(
        batch_size, 1, target_length, target_length + past_key_values_length
    )
    return expanded_mask


# Copied from transformers.models.bloom.modeling_bloom._expand_mask
def _expand_mask(mask: torch.Tensor, tgt_length: int) -> torch.BoolTensor:
    """
    Expands attention_mask from `[batch_size, src_length]` to `[batch_size, 1, tgt_length, src_length]`.
    """
    batch_size, src_length = mask.shape
    tgt_length = tgt_length if tgt_length is not None else src_length

    expanded_mask = ~(mask[:, None, None, :].to(torch.bool))
    return expanded_mask.expand(batch_size, 1, tgt_length, src_length)


def build_mpt_alibi_tensor(
    num_heads,
    sequence_length,
    sequence_length_with_past,
    alibi_bias_max=8,
    device=None,
    for_ae=False,
    topk=None,
):
    r"""
    Link to paper: https://arxiv.org/abs/2108.12409 - Alibi tensor is not causal as the original paper mentions, it
    relies on a translation invariance of softmax for quick implementation. This implementation has been copied from
    the alibi implementation of MPT source code that led to slightly different results than the Bloom alibi:
    https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L292
    """
    if not for_ae:
        alibi = torch.arange(
            1 - sequence_length, 1, dtype=torch.int32, device=device
        ).view(1, 1, 1, sequence_length)
    else:  # EM: All memory tokens get same bias
        alibi = (
            torch.tensor(-sequence_length_with_past, dtype=torch.int32, device=device)
            .repeat(sequence_length * topk)
            .view(1, 1, 1, sequence_length * topk)
        )
    num_heads_power_of_2 = 2 ** math.ceil(math.log2(num_heads))

    base = torch.arange(1, num_heads_power_of_2 + 1, dtype=torch.float32, device=device)
    base = base * (alibi_bias_max / num_heads_power_of_2)

    slopes = 1.0 / torch.pow(2, base)
    slopes = slopes.view(1, num_heads, 1, 1)

    if num_heads_power_of_2 != num_heads:
        slopes = torch.concat([slopes[1::2], slopes[::2]])[:num_heads]

    alibi = alibi * slopes
    return alibi.squeeze(0)


class ExtendedMptAttention(nn.Module):
    """Multi-head self attention.
    Using torch or triton attention implemetation enables user to also use additive bias.
    """

    def __init__(self, config: ExtendedMptConfig):
        super().__init__()
        self.hidden_size = config.hidden_size
        self.n_heads = config.n_heads
        self.n_layers = config.n_layers
        self.head_dim = self.hidden_size // self.n_heads
        self.softmax_scale = config.attn_config.softmax_scale
        if self.softmax_scale is None:
            self.softmax_scale = 1 / math.sqrt(self.hidden_size / self.n_heads)

        self.attn_dropout_p = config.attn_config.attn_pdrop
        self.Wqkv = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=False)
        self.out_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)

    def forward(
        self,
        hidden_states: torch.Tensor,
        position_bias: torch.Tensor,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        attention_mask: Optional[torch.Tensor] = None,
        long_range_past_key_value=None,
        topk=None,
        faiss_indexes=None,
        mask_by_sim=None,
        sim_threshold=None,
        position_bias_ae=None,
        current_layer=None,
        output_retrieved_memory_idx=False,
    ):
        batch_size, seq_length = hidden_states.shape[:2]

        mixed_qkv = self.Wqkv(hidden_states)
        query_states, key_states, value_states = mixed_qkv.chunk(3, dim=2)
        query_states = query_states.reshape(
            batch_size, seq_length, self.n_heads, self.head_dim
        ).transpose(1, 2)
        key_states = key_states.reshape(
            batch_size, seq_length, self.n_heads, self.head_dim
        ).transpose(1, 2)
        value_states = value_states.reshape(
            batch_size, seq_length, self.n_heads, self.head_dim
        ).transpose(1, 2)

        if past_key_value is not None:
            if len(past_key_value) != 0:
                key_states = torch.cat([past_key_value[0], key_states], dim=2)
                value_states = torch.cat([past_key_value[1], value_states], dim=2)
        past_key_value = (key_states, value_states)
        bsz, nh, s_q, d = query_states.shape

        attention_scores = (
            torch.matmul(query_states, key_states.transpose(-1, -2))
            * self.softmax_scale
        )
        key_length = key_states.shape[-2]
        query_length = (
            seq_length
            if past_key_value is None
            else seq_length + past_key_value[0].shape[2]
        )
        if position_bias is not None:
            if len(position_bias.shape) != 3:
                raise ValueError(
                    f"Expecting position_bias shape to be 3 dimensions, got {len(position_bias.shape)}"
                )

            position_bias_query_index = max(0, position_bias.size(1) - query_length)
            position_bias_key_index = max(0, position_bias.size(2) - key_length)

            position_bias = position_bias[
                :, position_bias_query_index:, position_bias_key_index:
            ]

            attention_scores = attention_scores + position_bias

        # EM: Retrieve memories from cache or faiss indexes
        if long_range_past_key_value is not None or faiss_indexes is not None:
            if long_range_past_key_value is not None:  # Manual store
                k_cache, v_cache = long_range_past_key_value
                s_cache = k_cache.size(-2)

                k_cache = k_cache.to(key_states.device)
                v_cache = v_cache.to(key_states.device)

                # Normalize query and key vectors
                q_n = query_states / vector_norm(
                    query_states, ord=2, dim=-1, keepdim=True
                ) 
                k_n = k_cache / vector_norm(k_cache, ord=2, dim=-1, keepdim=True)
                sim = q_n.matmul(k_n.transpose(-1, -2))
                if s_cache < topk:   # number of tokens in cache < topk
                    topk = s_cache
                val, idx = torch.topk(sim, k=topk, dim=-1)  # Retrieve topk memories

                reshaped_idx = idx.reshape(bsz, nh, s_q * topk)
                selected_k = k_cache.gather(
                    dim=-2, index=reshaped_idx.unsqueeze(-1).expand(-1, -1, -1, d)
                )
                selected_v = v_cache.gather(
                    dim=-2, index=reshaped_idx.unsqueeze(-1).expand(-1, -1, -1, d)
                )

            elif faiss_indexes is not None:  # FAISS indexes
                kn_index, kv_index = faiss_indexes
                q_n = query_states / vector_norm(
                    query_states, ord=2, dim=-1, keepdim=True
                )
                # One-hot encoding for layer, head to only retrieve memories from the same layer, head
                one_hot_encodings = (
                    F.one_hot(
                        torch.arange(0, nh * self.n_layers, device=query_states.device)
                    )
                    * 10
                )
                q_n = torch.concat(
                    [
                        rearrange(q_n, "b h s d -> b (h s) d", h=nh),
                        one_hot_encodings[nh * current_layer : nh * (current_layer + 1)]
                        .unsqueeze(0)
                        .repeat_interleave(repeats=query_states.size(-2), dim=-2),
                    ],
                    dim=-1,
                ).squeeze()

                if kn_index.ntotal / (nh * self.n_layers) < topk:
                    topk = int(kn_index.ntotal / (nh * self.n_layers))

                val, idx = kn_index.search(q_n.to("cpu").detach().numpy(), k=topk)
                val = torch.tensor(val - 100).reshape(bsz, nh, s_q, topk)  #Similarity includes scale factor from one-hot encoding
                reshaped_idx = torch.tensor(
                    idx % (kn_index.ntotal / (nh * self.n_layers))
                ).reshape(bsz, nh, s_q * topk)

                # Retrieve tensors
                selected_k = rearrange(
                    torch.tensor(kv_index.reconstruct_batch(idx.flatten()))[:, :d],
                    "(h s) d -> 1 h s d",
                    h=nh,
                ).to(query_states.device)
                selected_v = rearrange(
                    torch.tensor(kv_index.reconstruct_batch(idx.flatten()))[:, d:],
                    "(h s) d -> 1 h s d",
                    h=nh,
                ).to(query_states.device)

            selected_key_length = selected_k.size(-2)
            key_length += selected_key_length
            attention_scores_cache = (
                query_states.matmul(selected_k.transpose(-1, -2)) * self.softmax_scale
            )
            # EM: Mask by similarity
            if mask_by_sim:
                sim_mask = (
                    rearrange(~(val > sim_threshold).bool(), "b h s i -> b h (s i)")
                    .unsqueeze(-2)
                    .expand(-1, -1, s_q, -1)
                ).to(query_states.device)

                attention_scores_cache = attention_scores_cache.masked_fill(
                    sim_mask, torch.finfo(query_states.dtype).min
                )

            # EM: Add position bias to cache
            if position_bias_ae is not None:
                if len(position_bias_ae.shape) != 3:
                    raise ValueError(
                        f"Expecting position_bias shape to be 3 dimensions, got {len(position_bias_ae.shape)}"
                    )

                position_bias_query_index = max(
                    0, position_bias_ae.size(1) - query_length
                )
                position_bias_key_index = max(
                    0, position_bias_ae.size(2) - selected_key_length
                )

                position_bias_ae = position_bias_ae[
                    :, position_bias_query_index:, position_bias_key_index:
                ]

                attention_scores_cache = attention_scores_cache + position_bias_ae

            # EM: Concatenate cache and current attention weights, values
            attention_scores = torch.cat(
                [attention_scores_cache, attention_scores], dim=-1
            )  # Concat attention scores, values
            value_states = torch.cat([selected_v, value_states], dim=-2)

        # EM: Create mask for external memories, queries only attend to their own memories
        def _create_external_memories_mask(k, s_q, device):
            mask = torch.zeros(s_q, s_q * k, device=device, dtype=torch.bool)
            for i in range(s_q):
                mask[i, i * k : (i + 1) * k] = 1
            return ~mask

        if attention_mask is not None:
            # EM: Concatenate attention mask with external memories mask
            if long_range_past_key_value is not None or faiss_indexes is not None:
                mask = _create_external_memories_mask(
                    k=topk, s_q=s_q, device=attention_scores.device
                )
                attention_mask = attention_mask.squeeze(dim=0).squeeze(dim=0)
                attention_mask = torch.cat([mask, attention_mask], dim=1)
            attention_scores = attention_scores.masked_fill(
                attention_mask, torch.finfo(query_states.dtype).min
            )

        # (batch_size, n_heads, seq_length, key_length)
        attn_weights = nn.functional.softmax(attention_scores.float(), dim=-1).to(
            value_states.dtype
        )
        attn_weights = nn.functional.dropout(
            attn_weights, p=self.attn_dropout_p, training=self.training
        )

        context_states = torch.matmul(attn_weights, value_states)
        context_states = (
            context_states.permute(0, 2, 1, 3)
            .contiguous()
            .view(batch_size, seq_length, -1)
        )
        attn_output = self.out_proj(context_states)

        if not output_retrieved_memory_idx:
            reshaped_idx = None

        return attn_output, attn_weights, past_key_value, reshaped_idx


class MptMLP(nn.Module):
    def __init__(self, config: ExtendedMptConfig):
        super().__init__()
        hidden_size = config.hidden_size

        self.up_proj = nn.Linear(hidden_size, 4 * hidden_size, bias=False)
        self.act = nn.GELU(approximate="none")
        self.down_proj = nn.Linear(4 * hidden_size, hidden_size, bias=False)
        self.hidden_dropout = config.attn_config.attn_pdrop

    def forward(
        self, hidden_states: torch.Tensor, residual: torch.Tensor
    ) -> torch.Tensor:
        hidden_states = self.act(self.up_proj(hidden_states))

        intermediate_output = self.down_proj(hidden_states)

        output = F.dropout(
            intermediate_output, p=self.hidden_dropout, training=self.training
        )
        output = output + residual

        return output


class MptBlock(nn.Module):
    """MPTBlock"""

    def __init__(self, config: ExtendedMptConfig):
        super().__init__()
        hidden_size = config.hidden_size

        self.norm_1 = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
        # backward compatibility with weights on the Hub
        self.norm_1.bias = None

        self.num_heads = config.n_heads
        self.attn = ExtendedMptAttention(config)

        self.norm_2 = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
        # backward compatibility with weights on the Hub
        self.norm_2.bias = None

        self.ffn = MptMLP(config)

        self.dropout_rate = config.attn_config.attn_pdrop
        self.resid_attn_dropout = nn.Dropout(self.dropout_rate)

    def forward(
        self,
        hidden_states: torch.Tensor,
        position_bias: torch.Tensor,
        attention_mask: torch.Tensor,
        layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
        use_cache: bool = False,
        output_attentions: bool = False,
        output_retrieved_memory_idx: bool = False,
        topk: int = None,
        long_range_past_key_value: Optional[Tuple[torch.Tensor]] = None,
        faiss_indexes: Tuple = None,
        position_bias_ae=None,
        current_layer: int = None,
        mask_by_sim: bool = False,
        sim_threshold: float = None,
    ):
        # hidden_states: [batch_size, seq_length, hidden_size]
        # Layer norm at the beginning of the transformer layer.
        layernorm_output = self.norm_1(hidden_states)

        residual = hidden_states

        # Self attention.
        attn_outputs, attn_weights, past_key_value, reshaped_idx = self.attn(
            layernorm_output,
            position_bias=position_bias,
            attention_mask=attention_mask,
            past_key_value=layer_past,
            long_range_past_key_value=long_range_past_key_value,
            topk=topk,
            faiss_indexes=faiss_indexes,
            position_bias_ae=position_bias_ae,
            current_layer=current_layer,
            mask_by_sim=mask_by_sim,
            sim_threshold=sim_threshold,
            output_retrieved_memory_idx=output_retrieved_memory_idx,
        )

        hidden_states = self.resid_attn_dropout(attn_outputs) + residual

        layernorm_output = self.norm_2(hidden_states)

        # Get residual
        residual = hidden_states

        # MLP.
        output = self.ffn(layernorm_output, residual)
        outputs = (output,)

        if use_cache:
            outputs += (past_key_value,)

        if output_attentions:
            outputs += (attn_weights,)
        if output_retrieved_memory_idx:
            outputs += (reshaped_idx,)

        return outputs  # hidden_states, present, attentions


class MptPreTrainedModel(PreTrainedModel):
    """MPT Pretrained Model"""

    config_class = ExtendedMptConfig
    base_model_prefix = "transformer"
    supports_gradient_checkpointing = True
    _no_split_modules = ["MptBlock"]
    _keys_to_ignore_on_load_missing = [r"lm_head.*."]

    def __init__(self, *inputs, **kwargs):
        super().__init__(*inputs, **kwargs)

    def _init_weights(self, module: nn.Module):
        """Initialize the weights."""
        if isinstance(module, nn.Linear):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, LayerNorm):
            if module.bias is not None:
                module.bias.data.zero_()
            module.weight.data.fill_(1.0)

    def _set_gradient_checkpointing(self, module: nn.Module, value: bool = False):
        if isinstance(module, ExtendedMptConfig):
            module.gradient_checkpointing = value

    @staticmethod
    def _convert_to_mpt_cache(
        past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]]
    ) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
        """
        Converts the cache to the format expected by Mpt, i.e. to tuple(tuple([batch_size * num_heads, ...]))
        """
        batch_size, num_heads, head_dim, seq_length = past_key_value[0][0].shape
        batch_size_times_num_heads = batch_size * num_heads
        # key:  [batch_size, num_heads, head_dim, seq_length] -> [batch_size * num_heads, head_dim, seq_length]
        # value: [batch_size, num_heads, seq_length, head_dim] -> [batch_size * num_heads, seq_length, head_dim]
        return tuple(
            (
                layer_past[0].reshape(batch_size_times_num_heads, head_dim, seq_length),
                layer_past[1].reshape(batch_size_times_num_heads, seq_length, head_dim),
            )
            for layer_past in past_key_value
        )


MPT_START_DOCSTRING = r"""

    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`ExtendedMptConfig`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""

MPT_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
            `input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values[0][0].shape[2]`
            (`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary.

            If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
            `input_ids`.

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`):
            Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
            `past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
            their past given to this model should not be passed as `input_ids` as they have already been computed.

            Each element of `past_key_values` is a tuple (past_key, past_value):
            - past_key: [batch_size * num_heads, head_dim, kv_length]
            - past_value: [batch_size * num_heads, kv_length, head_dim]
        attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)

        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
            model's internal embedding lookup matrix.

            If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
            `past_key_values`).
        use_cache (`bool`, *optional*):
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
        use_external_mind (`bool`, *optional*, defaults to `True`):
            Whether to attend to external memories.
        long_range_past_key_values (`List[Tuple[torch.FloatTensor]]`, *optional*, defaults to None):
            Manual store for memories.
        faiss_indexes (`Tuple[faiss.swigfaiss_avx2.IndexFlatIP]`, *optional*, defaults to None):
            Vector store for memories.
        topk (`int`, *optional*, defaults to `10`):
            Number of external memories for each query token to retrieve and attend to.
"""


@add_start_docstrings(
    "The bare Mpt Model transformer outputting raw hidden-states without any specific head on top.",
    MPT_START_DOCSTRING,
)
class ExtendedMptModel(MptPreTrainedModel):
    """Extended MPT Model"""

    def __init__(self, config: ExtendedMptConfig):
        super().__init__(config)

        self.hidden_size = config.hidden_size
        self.num_heads = config.n_heads

        # Embedding + LN Embedding
        self.wte = nn.Embedding(config.vocab_size, self.hidden_size)

        # Transformer blocks
        self.blocks = nn.ModuleList([MptBlock(config) for _ in range(config.n_layers)])

        # Final Layer Norm
        self.norm_f = LayerNorm(self.hidden_size, eps=config.layer_norm_epsilon)
        # backward compatibility with weights on the Hub
        self.norm_f.bias = None

        self.gradient_checkpointing = False

        # Initialize weights and apply final processing
        self.post_init()

        self.mask_by_sim = config.attn_config.mask_by_sim
        self.sim_threshold = config.attn_config.sim_threshold
        self.topk = config.attn_config.topk
        self.use_external_mind = config.use_external_mind
        self.use_external_mind_by_layer = config.attn_config.use_external_mind_by_layer

    def get_input_embeddings(self):
        return self.wte

    def build_mpt_alibi_tensor(
        self,
        num_heads,
        sequence_length,
        sequence_length_with_past,
        alibi_bias_max=8,
        device=None,
        for_ae=None,
        topk=None,
    ):
        return build_mpt_alibi_tensor(
            num_heads,
            sequence_length,
            sequence_length_with_past,
            alibi_bias_max,
            device,
            for_ae=for_ae,
            topk=topk,
        )

    def _prepare_attn_mask(
        self,
        attention_mask: torch.Tensor,
        input_shape: Tuple[int, int],
        past_key_values_length: int,
    ) -> torch.BoolTensor:
        # create causal mask
        # [batch_size, seq_length] -> [batch_size, 1, tgt_length, src_length]
        if input_shape[1] + past_key_values_length != attention_mask.shape[1]:
            raise ValueError(
                "Attention mask shape should be (batch_size, seq_length + past_key_values_length)"
                f" but is {attention_mask.shape} with input_ids shape {input_shape} and past length"
                f" {past_key_values_length}."
            )
        combined_attention_mask = None
        device = attention_mask.device
        _, src_length = input_shape

        if src_length > 1:
            combined_attention_mask = _make_causal_mask(
                input_shape,
                device=device,
                past_key_values_length=past_key_values_length,
            )

        # [batch_size, seq_length] -> [batch_size, 1, tgt_length, src_length]
        expanded_attn_mask = _expand_mask(attention_mask, tgt_length=src_length)
        combined_attention_mask = (
            expanded_attn_mask
            if combined_attention_mask is None
            else expanded_attn_mask | combined_attention_mask
        )

        return combined_attention_mask

    def set_input_embeddings(self, new_embeddings: torch.Tensor):
        self.wte = new_embeddings

    @add_start_docstrings_to_model_forward(MPT_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=BaseModelOutputWithPastAndCrossAttentions,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
        attention_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_retrieved_memory_idx: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        use_external_mind: Optional[bool] = None,
        long_range_past_key_values: Optional[list[Tuple[torch.FloatTensor]]] = None,
        faiss_indexes: Tuple = None,
        topk: int = None,
    ) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.config.output_attentions
        )
        output_retrieved_memory_idx = (
            output_retrieved_memory_idx
            if output_retrieved_memory_idx is not None
            else False
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )
        use_external_mind = (
            use_external_mind
            if use_external_mind is not None
            else self.use_external_mind
        )
        topk = topk if topk is not None else self.topk

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError(
                "You cannot specify both input_ids and inputs_embeds at the same time"
            )
        elif input_ids is not None:
            batch_size, seq_length = input_ids.shape
        elif inputs_embeds is not None:
            batch_size, seq_length, _ = inputs_embeds.shape
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        if past_key_values is None:
            past_key_values = tuple([None] * len(self.blocks))

        if inputs_embeds is None:
            inputs_embeds = self.wte(input_ids)

        hidden_states = inputs_embeds

        presents = () if use_cache else None
        all_self_attentions = () if output_attentions else None
        all_hidden_states = () if output_hidden_states else None
        all_idx = () if output_retrieved_memory_idx else None

        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning_once(
                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                )
                use_cache = False

        # Compute alibi tensor: check build_alibi_tensor documentation
        seq_length_with_past = seq_length
        past_key_values_length = 0
        if past_key_values[0] is not None:
            past_key_values_length = past_key_values[0][0].shape[2]
            seq_length_with_past = seq_length_with_past + past_key_values_length
        if attention_mask is None:
            attention_mask = torch.ones(
                (batch_size, seq_length_with_past), device=hidden_states.device
            )
        else:
            attention_mask = attention_mask.to(hidden_states.device)

        alibi = self.build_mpt_alibi_tensor(
            self.num_heads,
            self.config.max_seq_len,
            seq_length_with_past,
            device=hidden_states.device,
        )
        # EM: Alibi tensor for retrieved kvs
        alibi_ae = self.build_mpt_alibi_tensor(
            self.num_heads,
            seq_length,
            seq_length_with_past,
            device=hidden_states.device,
            for_ae=True,
            topk=topk,
        )

        causal_mask = self._prepare_attn_mask(
            attention_mask,
            input_shape=(batch_size, seq_length),
            past_key_values_length=past_key_values_length,
        )

        for i, (block, layer_past) in enumerate(zip(self.blocks, past_key_values)):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            long_range_past_key_value = (
                long_range_past_key_values[i]
                if (
                    long_range_past_key_values is not None
                    and self.use_external_mind_by_layer[i]
                    and use_external_mind is True
                )
                else None
            )
            if long_range_past_key_value is not None and faiss_indexes is not None:
                raise NotImplementedError(
                    """Using faiss and passing key value pairs
                    manually are mutually exclusive right now."""
                )
            if self.gradient_checkpointing and self.training:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        # None for past_key_value
                        return module(
                            *inputs,
                            use_cache=use_cache,
                            output_attentions=output_attentions,
                        )

                    return custom_forward

                outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    alibi,
                    causal_mask,
                    layer_past,
                )
            else:
                outputs = block(
                    hidden_states,
                    layer_past=layer_past,
                    attention_mask=causal_mask,
                    use_cache=use_cache,
                    output_attentions=output_attentions,
                    output_retrieved_memory_idx=output_retrieved_memory_idx,
                    position_bias=alibi,
                    position_bias_ae=alibi_ae,
                    topk=topk,
                    long_range_past_key_value=long_range_past_key_value,
                    faiss_indexes=faiss_indexes,
                    mask_by_sim=self.mask_by_sim,
                    sim_threshold=self.sim_threshold,
                    current_layer=i,
                )

            hidden_states = outputs[0]
            if use_cache is True:
                presents = presents + (outputs[1],)

            if output_attentions:
                all_self_attentions = all_self_attentions + (
                    outputs[2 if use_cache else 1],
                )
            if output_retrieved_memory_idx:
                idx = (
                    3
                    if (use_cache & output_attentions)
                    else 2
                    if (use_cache or output_attentions)
                    else 1
                )
                all_idx = all_idx + (outputs[idx],)

        # Add last hidden state
        hidden_states = self.norm_f(hidden_states)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(
                v
                for v in [
                    hidden_states,
                    presents,
                    all_hidden_states,
                    all_self_attentions,
                    all_idx,
                ]
                if v is not None
            )

        return BaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=hidden_states,
            past_key_values=presents,
            hidden_states=all_hidden_states,
            attentions=(all_self_attentions, all_idx),  # EM: Return idx of retrieved memories
        )


@add_start_docstrings(
    """
    The MPT Model transformer with a language modeling head on top (linear layer with weights tied to the input
    embeddings).
    """,
    MPT_START_DOCSTRING,
)
class ExtendedMptForCausalLM(MptPreTrainedModel):
    """Extended MPT for Causal LM."""

    _tied_weights_keys = ["lm_head.weight"]

    def __init__(self, config: ExtendedMptConfig, external_memories:list=None):
        super().__init__(config)
        self.transformer: ExtendedMptModel = ExtendedMptModel(config)
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        self.use_external_mind = config.use_external_mind
        self.memory_type = config.attn_config.memory_type
        self.memory_ids = None
        self.memories = None
        self.memory_device = config.attn_config.memory_device
        self.remove_special_ids = config.attn_config.remove_special_ids
        self.tokenizer_all_special_ids = config.attn_config.tokenizer_all_special_ids

        # EM: Memory token ids
        if external_memories is not None:
            self.memory_ids = external_memories
        # Initialize weights and apply final processing
        self.post_init()

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings: torch.Tensor):
        self.lm_head = new_embeddings

    # EM: Clear memory cache
    def clear_memory(self):
        """Clear memory cache."""
        self.memory_ids = None
        self.memories = None

    def prepare_inputs_for_generation(
        self,
        input_ids: torch.LongTensor,
        past_key_values: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        use_cache: Optional[bool] = None,
        **kwargs,
    ) -> dict:
        # only last token for input_ids if past is not None
        if past_key_values:
            input_ids = input_ids[:, -1].unsqueeze(-1)

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        model_inputs.update(
            {
                "past_key_values": past_key_values,  # NITS should it be layer_past?
                "use_cache": use_cache,
                "attention_mask": attention_mask,
                "use_external_mind": kwargs.get("use_external_mind"), # EM: Add config here
                "topk": kwargs.get("topk"),
            }
        )
        return model_inputs

    @add_start_docstrings_to_model_forward(MPT_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=CausalLMOutputWithCrossAttentions,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
        attention_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_retrieved_memory_idx: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        use_external_mind: Optional[bool] = None,
        topk: int = None,
    ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
            `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
            are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
        """
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        # EM: Generate key value cache once on first call
        if (
            self.memory_ids is not None and self.memories is None
        ): 
            self.memory_ids = torch.tensor([self.memory_ids], device=self.device) if type(self.memory_ids)==list else self.memory_ids
            self.memories = self.generate_cache(
                self.memory_ids, cache_type=self.memory_type,
            )
            # EM: Remove special tokens from memory cache
            if self.remove_special_ids:
                idx_to_remove = [
                    token_idx
                    for token_idx, token in enumerate(self.memory_ids[0])
                    if token in self.tokenizer_all_special_ids
                ]
                if self.memory_type == "manual":
                    mask = torch.ones(self.memories[0][0].size(), dtype=torch.bool)
                    mask[:, :, idx_to_remove, :] = False

                    new_size = (
                        self.memories[0][0].size(0),
                        self.memories[0][0].size(1),
                        -1,
                        self.memories[0][0].size(3),
                    )
                    self.memories = [
                        (ks[mask].view(new_size), vs[mask].view(new_size))
                        for ks, vs in self.memories
                    ]
                else:
                    kn_index, kv_index = self.memories
                    all_idx_to_remove = [
                        [
                            i
                            for i in range(0, kn_index.ntotal)
                            if (
                                i
                                % (
                                    kn_index.ntotal
                                    / (
                                        self.config.num_attention_heads
                                        * self.config.num_hidden_layers
                                    )
                                )
                            )
                            == j
                        ]
                        for j in idx_to_remove
                    ]
                    kn_index.remove_ids(
                        np.array(all_idx_to_remove).flatten().astype("int64")
                    )
                    kv_index.remove_ids(
                        np.array(all_idx_to_remove).flatten().astype("int64")
                    )

        use_external_mind = (
            use_external_mind
            if use_external_mind is not None
            else self.use_external_mind
        )
        topk = topk if topk is not None else None

        long_range_past_key_values = None
        faiss_indexes = None
        if hasattr(self, "memories") and isinstance(self.memories, list):
            long_range_past_key_values = self.memories
        elif hasattr(self, "memories"):
            faiss_indexes = self.memories

        transformer_outputs = self.transformer(
            input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_retrieved_memory_idx=output_retrieved_memory_idx,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            long_range_past_key_values=long_range_past_key_values,
            faiss_indexes=faiss_indexes,
            use_external_mind=use_external_mind,
            topk=topk,
        )
        hidden_states = transformer_outputs[0]

        lm_logits = self.lm_head(hidden_states)

        loss = None
        if labels is not None:
            # move labels to correct device to enable model parallelism
            labels = labels.to(lm_logits.device)
            # Shift so that tokens < n predict n
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            batch_size, seq_length, vocab_size = shift_logits.shape
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(
                shift_logits.view(batch_size * seq_length, vocab_size),
                shift_labels.view(batch_size * seq_length),
            )

        if not return_dict:
            output = (lm_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return CausalLMOutputWithCrossAttentions(
            loss=loss,
            logits=lm_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )

    def _reorder_cache(
        self,
        past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...],
        beam_idx: torch.LongTensor,
    ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
        """
        This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
        [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
        beam_idx at every generation step.

        Output shares the same memory storage as `past`.
        """
        # Get a copy of `beam_idx` on all the devices where we need those indices.
        device_to_beam_idx = {
            past_state.device: beam_idx.to(past_state.device)
            for layer_past in past
            for past_state in layer_past
        }
        reordered_past = tuple(
            (
                layer_past[0].index_select(0, device_to_beam_idx[layer_past[0].device]),
                layer_past[1].index_select(0, device_to_beam_idx[layer_past[0].device]),
            )
            for layer_past in past
        )
        return reordered_past

    # EM: Add method to generate key-value cache
    def generate_cache(
        self,
        input_ids: torch.LongTensor,
        stride: int = 512,
        max_len: int = 3072,
        cache_type: str = "manual",
    ):
        """Generate cache for long range attention."""
        if cache_type not in ["manual", "faiss"]:
            raise NotImplementedError(f"Cache type {cache_type} not implemented.")

        prev_end_loc = 0
        long_range_past_key_values = None
        faiss_indexes = None
        for b_idx in range(
            0, input_ids.size(-1), stride
        ):  # generate kv-pairs using stride
            end_loc = min(b_idx + max_len, input_ids.size(-1))
            trg_len = end_loc - prev_end_loc
            subseq = input_ids[:, b_idx:end_loc].to(self.device)
            with torch.no_grad():
                outputs = self.transformer(
                    subseq, use_cache=True, use_external_mind=False
                )
            to_cache = [
                (kv[0][:, :, -trg_len:], kv[1][:, :, -trg_len:])
                for kv in outputs.past_key_values
            ]
            long_range_past_key_values, faiss_indexes = self.cache(
                to_cache,
                cache_type,
                long_range_past_key_values=long_range_past_key_values,
                faiss_indexes=faiss_indexes,
            )

            prev_end_loc = end_loc
            if end_loc == input_ids.size(-1):
                break
        if long_range_past_key_values is not None:
            return long_range_past_key_values
        else:
            return faiss_indexes
        
    # EM: Add method to cache key value pairs
    def cache(
        self,
        to_cache: list,
        cache_type: str = "manual",
        long_range_past_key_values: list = None,
        faiss_indexes: faiss.IndexFlatIP = None,
        max_length_cache=100000,
        verbose=False,
    ):
        """Cache long range attention."""
        if (long_range_past_key_values is not None) & (faiss_indexes is not None):
            raise NotImplementedError(
                "Using faiss and passing key value pairs manually are mutually exclusive right now."
            )
        
        # To avoid spinning up a new index for each layer, we add one-hot encodings to the keys so that queries match with the appropriate layer, head
        if cache_type == "faiss":  # add one-hot encoding to match layer, head indices
            one_hot_encodings = (
                F.one_hot(torch.arange(0, self.config.n_heads * self.config.n_layers))
                * 10
            )
            # New indices, one to store normalized keys with one-hot encodings, another to retrieve kv pairs without normalization
            if faiss_indexes is None:
                faiss_indexes = (
                    faiss.IndexFlatIP(
                        to_cache[0][0].size(-1) + one_hot_encodings.size(-1)
                    ),
                    faiss.IndexFlatIP(to_cache[0][0].size(-1) * 2),
                )
            kn_index, kv_index = faiss_indexes
            for l_idx, (k, v) in enumerate(to_cache):
                k_n = (k / vector_norm(k, ord=2, dim=-1, keepdim=True)).to("cpu") #Normalize keys for cosine sim
                
                # Indices are 2 dimensional, so flatten 
                # Add normalized keys with one-hot encodings
                k_n = torch.concat(
                    [
                        rearrange(k_n, "b h s d -> b (h s) d", h=self.config.n_heads),
                        one_hot_encodings[
                            self.config.n_heads
                            * l_idx : self.config.n_heads
                            * (l_idx + 1)
                        ]
                        .unsqueeze(0)
                        .repeat_interleave(repeats=k.size(-2), dim=-2),
                    ],
                    dim=-1,
                )
                kn_index.add(k_n.squeeze().numpy())

                # Add unnormalized keys and values
                k = rearrange(k, "b h s d -> b (h s) d", h=self.config.n_heads)
                v = rearrange(v, "b h s d -> b (h s) d", h=self.config.n_heads)
                kv_index.add(
                    torch.concat([k.squeeze(), v.squeeze()], dim=1).to("cpu").numpy()
                )
        else:
            # Simply use list to store key value pairs
            if long_range_past_key_values is None:
                long_range_past_key_values = [
                    (k.to(self.memory_device), v.to(self.memory_device))
                    for k, v in to_cache
                ]
            else:
                long_range_past_key_values = [
                    (
                        torch.concat(
                            [kv[0], to_cache[ind][0].to(self.memory_device)], dim=2
                        ),
                        torch.concat(
                            [kv[1], to_cache[ind][1].to(self.memory_device)], dim=2
                        ),
                    )
                    for ind, kv in enumerate(long_range_past_key_values)
                ]
        if (
            long_range_past_key_values is not None
        ):  # set a limit on manual memory length
            if long_range_past_key_values[0][0].size(-2) > max_length_cache:
                long_range_past_key_values = [
                    (
                        kv[0][:, :, -max_length_cache:],
                        kv[1][:, :, -max_length_cache:],
                    )
                    for kv in long_range_past_key_values
                ]
        if verbose:
            if cache_type == "faiss":
                print(f"{kn_index.ntotal} keys in faiss index")
            else:
                print(f"{long_range_past_key_values[0][0].size(-2)} cached kvs")

        return (
            long_range_past_key_values,
            (kn_index, kv_index) if cache_type == "faiss" else None,
        )