Delete convert_to_safetensors.py
Browse files- convert_to_safetensors.py +0 -68
convert_to_safetensors.py
DELETED
@@ -1,68 +0,0 @@
|
|
1 |
-
import argparse
|
2 |
-
import random
|
3 |
-
from statistics import mean, stdev
|
4 |
-
from typing import List
|
5 |
-
import torch
|
6 |
-
import torchmetrics
|
7 |
-
from datasets import load_dataset
|
8 |
-
from tqdm import tqdm
|
9 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
10 |
-
|
11 |
-
|
12 |
-
def parse_args():
|
13 |
-
parser = argparse.ArgumentParser()
|
14 |
-
parser.add_argument(
|
15 |
-
"--model_name_or_path",
|
16 |
-
type=str,
|
17 |
-
default="/scratch/project_465000144/dasamuel/normistral/normistral-11b-masked-post-hf-60000",
|
18 |
-
help="Path to the pre-trained model",
|
19 |
-
)
|
20 |
-
args = parser.parse_args()
|
21 |
-
|
22 |
-
return args
|
23 |
-
|
24 |
-
|
25 |
-
def load_model(model_path: str):
|
26 |
-
# Load the pre-trained model and tokenizer
|
27 |
-
tokenizer = AutoTokenizer.from_pretrained(model_path, cache_dir=".", token="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", torch_dtype=torch.bfloat16)
|
28 |
-
model = AutoModelForCausalLM.from_pretrained(model_path, cache_dir=".", token="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", torch_dtype=torch.bfloat16).cuda().eval()
|
29 |
-
|
30 |
-
eos_token_ids = [
|
31 |
-
token_id
|
32 |
-
for token_id in range(tokenizer.vocab_size)
|
33 |
-
if "\n" in tokenizer.decode([token_id])
|
34 |
-
]
|
35 |
-
|
36 |
-
if hasattr(model.config, "n_positions"):
|
37 |
-
max_length = model.config.n_positions
|
38 |
-
elif hasattr(model.config, "max_position_embeddings"):
|
39 |
-
max_length = model.config.max_position_embeddings
|
40 |
-
elif hasattr(model.config, "max_length"):
|
41 |
-
max_length = model.config.max_length
|
42 |
-
elif hasattr(model.config, "n_ctx"):
|
43 |
-
max_length = model.config.n_ctx
|
44 |
-
else:
|
45 |
-
max_length = 4096 # Default value
|
46 |
-
|
47 |
-
return {
|
48 |
-
"name": model_path.split("/")[-1],
|
49 |
-
"tokenizer": tokenizer,
|
50 |
-
"model": model,
|
51 |
-
"eos_token_ids": eos_token_ids,
|
52 |
-
"max_length": max_length,
|
53 |
-
}
|
54 |
-
|
55 |
-
|
56 |
-
def main():
|
57 |
-
args = parse_args()
|
58 |
-
|
59 |
-
model = load_model(args.model_name_or_path)
|
60 |
-
|
61 |
-
model["model"].save_pretrained(
|
62 |
-
args.model_name_or_path,
|
63 |
-
max_shard_size="4.7GB"
|
64 |
-
)
|
65 |
-
|
66 |
-
|
67 |
-
if __name__ == "__main__":
|
68 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|