File size: 14,325 Bytes
1f33c92
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param sde_net_arch: Network architecture for extracting features\n        when using gSDE. If None, the latent features from the policy will be used.\n        Pass an empty list to use the states as features.\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2d4ba35320>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2d4ba353b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2d4ba35440>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2d4ba354d0>", "_build": "<function ActorCriticPolicy._build at 0x7f2d4ba35560>", "forward": "<function ActorCriticPolicy.forward at 0x7f2d4ba355f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2d4ba35680>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2d4ba35710>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2d4ba357a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2d4ba35830>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2d4ba358c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2d4ba77e10>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651692097.116365, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIA0Ab2xu68/AWmCvlP2kr7sWdK8DpopvgAAAAAAAAAAM/LxvCWBsT85ijq/nZmdvqurszwewkI9AAAAAAAAAACas/u9niO/P1ZWCr/nrL2940ANvmYPkb4AAAAAAAAAAMD/nz2XECE/nJqQPD6Zr77TFjw9wq28vAAAAAAAAAAAM06avJvYsT84ex+/KV2wvk47hTznnIY9AAAAAAAAAAAz/6e7iYqPP8qSIDsK4c2+Xa9NvaVfZD0AAAAAAAAAALO+CD1BOms+7VUmPmxu4L5XDW8+TqPiuQAAAAAAAAAAZhZjOzg0rD9dTmg9BwTvviIN2Lu8rTq9AAAAAAAAAAAzvUC85HgYPuBpqT1N+pm+AgeDPZKKpDwAAAAAAAAAAKY3kz1pmlw9nfjoPADfqb7IHtw9Vy6xvQAAAAAAAAAA9k6EPjoIgz/cCag+fG8YvwBzrT6VL9M9AAAAAAAAAACazOg8AhksPwwNFTyRocm+wMmEvKQ/wjwAAAAAAAAAAGZ7jLxfNpw/53eGvYIS6b5V75S9+giavQAAAAAAAAAAMzFRPJXBrT4dqa+8y26bvmrL3jyNfjO9AAAAAAAAAACaAom8w5kpuhZH57YASlAxpM59OuFpBzYAAIA/AACAPwAZyT33nqU+ftB8PH1nmb4rY689Hj4hvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVUhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwLSoTzLdckCUhpRSlIwBbJRL+IwBdJRHQJ9Mjj7yhBZ1fZQoaAZoCWgPQwj3d7ZH76hwQJSGlFKUaBVL/WgWR0CfTLnEVFhHdX2UKGgGaAloD0MIeXWOARkLc0CUhpRSlGgVS/poFkdAn010sOG0u3V9lChoBmgJaA9DCABywoTRVm9AlIaUUpRoFUv8aBZHQJ9NgX3xnWd1fZQoaAZoCWgPQwguG53zk1xxQJSGlFKUaBVL6WgWR0CfTY4tYjjadX2UKGgGaAloD0MIj/tW68SlckCUhpRSlGgVS/toFkdAn09uOwPiDXV9lChoBmgJaA9DCK8nui78XG9AlIaUUpRoFU0lAWgWR0CfT/bTMJQddX2UKGgGaAloD0MIPdaMDLKPcECUhpRSlGgVS/VoFkdAn1AiSA6Mi3V9lChoBmgJaA9DCLFR1m9mL3NAlIaUUpRoFU0OAWgWR0CfULJMg2ZRdX2UKGgGaAloD0MI6nWLwNiobUCUhpRSlGgVS+xoFkdAn1F0LhJiAnV9lChoBmgJaA9DCMLexJBcXHBAlIaUUpRoFUv4aBZHQJ9R6kFfReF1fZQoaAZoCWgPQwjNI38wsJ1zQJSGlFKUaBVNBgFoFkdAn1Hm+9Jz1nV9lChoBmgJaA9DCM6qz9XW/29AlIaUUpRoFU0SAWgWR0CfUkZ9/jKgdX2UKGgGaAloD0MIdy6M9KL9b0CUhpRSlGgVTRcBaBZHQJ9S39Oymhx1fZQoaAZoCWgPQwiWQ4tsp19xQJSGlFKUaBVL+WgWR0CfU08GLUCrdX2UKGgGaAloD0MIHJjcKHI3cECUhpRSlGgVS/5oFkdAn1QzJlrdnHV9lChoBmgJaA9DCCi2gqal9nBAlIaUUpRoFU0LAWgWR0CfVvfp2U0OdX2UKGgGaAloD0MIoDNpU3W4b0CUhpRSlGgVTRIBaBZHQJ9XWpYLb6B1fZQoaAZoCWgPQwhx58JIb1VxQJSGlFKUaBVNKgFoFkdAn1dbhR64UnV9lChoBmgJaA9DCNKNsKiIeXFAlIaUUpRoFU0mAWgWR0CfV/pobn5jdX2UKGgGaAloD0MIt5bJcLxfc0CUhpRSlGgVTUcBaBZHQJ9YRnRLK3d1fZQoaAZoCWgPQwg6W0BofepxQJSGlFKUaBVL92gWR0CfWHWOZLIxdX2UKGgGaAloD0MIj3Iwm4AcckCUhpRSlGgVS/NoFkdAn1jF+y7f53V9lChoBmgJaA9DCIbKv5aXAHFAlIaUUpRoFU0BAWgWR0CfWWhYNiH7dX2UKGgGaAloD0MIukkMAitYcECUhpRSlGgVS+NoFkdAn1mmu5jH43V9lChoBmgJaA9DCKfOo+L/E3JAlIaUUpRoFUviaBZHQJ9aC5oXbdt1fZQoaAZoCWgPQwjvcDs0LOJwQJSGlFKUaBVL9mgWR0CfWrIy0rsjdX2UKGgGaAloD0MIStI1ky95c0CUhpRSlGgVTSUBaBZHQJ9bHp0OmSB1fZQoaAZoCWgPQwhuiPGalz9wQJSGlFKUaBVNBwFoFkdAn1ucinpB5XV9lChoBmgJaA9DCKpIhbHFyHBAlIaUUpRoFU0FAWgWR0CfXCZ5Rjz7dX2UKGgGaAloD0MI3ncMj32ZbkCUhpRSlGgVTQYBaBZHQJ9cm6z3RHB1fZQoaAZoCWgPQwg/cJUnEKNuQJSGlFKUaBVL+mgWR0CfXRGCqZMMdX2UKGgGaAloD0MI3795caIlcUCUhpRSlGgVS+hoFkdAn19ECV8kU3V9lChoBmgJaA9DCHxfXKrSKHBAlIaUUpRoFUvuaBZHQJ9ffq2SdOJ1fZQoaAZoCWgPQwjSU+QQ8ZVyQJSGlFKUaBVL52gWR0CfYB0DU3GXdX2UKGgGaAloD0MIXATG+ga7bkCUhpRSlGgVTRwBaBZHQJ9g5Db8FZB1fZQoaAZoCWgPQwjuIkxRrgltQJSGlFKUaBVNAwFoFkdAn3+W2Xsw+XV9lChoBmgJaA9DCI1jJHuEhHJAlIaUUpRoFU0cAWgWR0Cff7mE4//vdX2UKGgGaAloD0MIlZuopbn4b0CUhpRSlGgVS/VoFkdAn4AOglF+eHV9lChoBmgJaA9DCA6ki00rlXFAlIaUUpRoFU0KAWgWR0CfgJgqVhTgdX2UKGgGaAloD0MIisdFtYgxbkCUhpRSlGgVTSoBaBZHQJ+AvskY4yZ1fZQoaAZoCWgPQwjayeAoOeJwQJSGlFKUaBVNGwFoFkdAn4H4msvIwXV9lChoBmgJaA9DCGtHcY66cG5AlIaUUpRoFU0NAWgWR0CfgrBAOavzdX2UKGgGaAloD0MIN3Fyv4ONcUCUhpRSlGgVTQoBaBZHQJ+DJamoBJZ1fZQoaAZoCWgPQwhVpMLYAslxQJSGlFKUaBVL/GgWR0CfgzjZL7GedX2UKGgGaAloD0MI7ImuC7/PbUCUhpRSlGgVTS4BaBZHQJ+DcIw/PgN1fZQoaAZoCWgPQwjZlZaR+jVuQJSGlFKUaBVNDgFoFkdAn4ROBczIm3V9lChoBmgJaA9DCL6ECg5v/XBAlIaUUpRoFUvlaBZHQJ+F3ItDlYF1fZQoaAZoCWgPQwjnNAu0u7luQJSGlFKUaBVNMQFoFkdAn4YXA2ycC3V9lChoBmgJaA9DCD547dJG5nJAlIaUUpRoFUvmaBZHQJ+GfLX+VC51fZQoaAZoCWgPQwg1s5YC0vtuQJSGlFKUaBVNEwFoFkdAn4c/v0AcUHV9lChoBmgJaA9DCPerAN+tsnFAlIaUUpRoFUvvaBZHQJ+IOkVN5+p1fZQoaAZoCWgPQwg18KMa9jdxQJSGlFKUaBVL9mgWR0CfiJkRSP2gdX2UKGgGaAloD0MIZAeVuA7icUCUhpRSlGgVTScBaBZHQJ+JeEOAiFF1fZQoaAZoCWgPQwig/rPmhyhxQJSGlFKUaBVL/GgWR0CfiaL0jC53dX2UKGgGaAloD0MICme3lgkWc0CUhpRSlGgVTRkBaBZHQJ+Kz/JeVs11fZQoaAZoCWgPQwhkB5W4TuJyQJSGlFKUaBVNHQFoFkdAn4w5ccENfHV9lChoBmgJaA9DCHpU/N+RY29AlIaUUpRoFU0NAWgWR0CfjFxaPjn3dX2UKGgGaAloD0MIk6gXfBolcUCUhpRSlGgVS/9oFkdAn4xdTgl4T3V9lChoBmgJaA9DCMO8x5kmMHFAlIaUUpRoFU0aAWgWR0CfjVDPWxyGdX2UKGgGaAloD0MI+prlshFMckCUhpRSlGgVTREBaBZHQJ+OQmu1WsB1fZQoaAZoCWgPQwhCCp5CbjByQJSGlFKUaBVNLwFoFkdAn45sHObAlHV9lChoBmgJaA9DCNVcbjDUDHJAlIaUUpRoFUv0aBZHQJ+Ox+DvmYB1fZQoaAZoCWgPQwjnFyXoLyhwQJSGlFKUaBVL82gWR0CfjvfvF3pwdX2UKGgGaAloD0MIX7adtsakb0CUhpRSlGgVS/doFkdAn5BN4FA3UHV9lChoBmgJaA9DCFVLOspBkXBAlIaUUpRoFU0UAWgWR0CfkJF1jiGWdX2UKGgGaAloD0MI/+ibNA3CNUCUhpRSlGgVS8loFkdAn5Dwgow223V9lChoBmgJaA9DCNy8cVIY7nFAlIaUUpRoFUvsaBZHQJ+Q+p5u63B1fZQoaAZoCWgPQwh2Tx4W6v9vQJSGlFKUaBVNAQFoFkdAn5IfJ7sv7HV9lChoBmgJaA9DCFOVtrjGQnFAlIaUUpRoFUv6aBZHQJ+S32zv7WN1fZQoaAZoCWgPQwid19glKmdxQJSGlFKUaBVNAgFoFkdAn5RoNd7fHnV9lChoBmgJaA9DCNVCyeSUW3NAlIaUUpRoFUvzaBZHQJ+VU3hn8Kp1fZQoaAZoCWgPQwjQudv10shxQJSGlFKUaBVL/WgWR0CflZ4oJAt4dX2UKGgGaAloD0MIFqHYCpp9cUCUhpRSlGgVS/1oFkdAn5W9znzQNXV9lChoBmgJaA9DCD6uDRXjpnJAlIaUUpRoFUv9aBZHQJ+Wou+RHPN1fZQoaAZoCWgPQwiT/fM0YG1wQJSGlFKUaBVL2mgWR0CflsgvUSZjdX2UKGgGaAloD0MIDTm2nmEgcECUhpRSlGgVTQUBaBZHQJ+X44+8oQZ1fZQoaAZoCWgPQwhWRiOf16txQJSGlFKUaBVNBQFoFkdAn5gNHlOoHnV9lChoBmgJaA9DCMIxy54Erm9AlIaUUpRoFUv6aBZHQJ+aUhr30wt1fZQoaAZoCWgPQwhjt88qM+NxQJSGlFKUaBVNMgFoFkdAn5pcDr7fpHV9lChoBmgJaA9DCKGi6ld6XXNAlIaUUpRoFU0MAWgWR0Cfmw5aePJadX2UKGgGaAloD0MI7gp9sIyXcECUhpRSlGgVTRoBaBZHQJ+bLHT7VKB1fZQoaAZoCWgPQwg8g4b+iTRyQJSGlFKUaBVL8mgWR0Cfm0mzByjpdX2UKGgGaAloD0MI4UIewY0NckCUhpRSlGgVS+doFkdAn5uhlDneSHV9lChoBmgJaA9DCPRsVn0uV25AlIaUUpRoFU1NAWgWR0CfnMFHrhR7dX2UKGgGaAloD0MIUpj3OFNIc0CUhpRSlGgVS/RoFkdAn56cox59mnV9lChoBmgJaA9DCPK0/MAVKXNAlIaUUpRoFUvxaBZHQJ+e6K4x1xN1fZQoaAZoCWgPQwhXdyy2yQNvQJSGlFKUaBVNIgFoFkdAn5+EM5OrQ3V9lChoBmgJaA9DCA4viEiNqHFAlIaUUpRoFU0IAWgWR0CfoPxQizLPdX2UKGgGaAloD0MIq5LIPkhSbkCUhpRSlGgVTS0BaBZHQJ+hMkZ75VR1fZQoaAZoCWgPQwjFrBdDObxwQJSGlFKUaBVNDQFoFkdAn6KnNorWiHV9lChoBmgJaA9DCLKC34YYbG5AlIaUUpRoFU0SAWgWR0CforT1TR6XdX2UKGgGaAloD0MIR8oWSTvUcUCUhpRSlGgVTUwBaBZHQJ+js3++/QB1fZQoaAZoCWgPQwjvdVJf1jxxQJSGlFKUaBVL+GgWR0CfpDplz2eydX2UKGgGaAloD0MIuATgn1J7cECUhpRSlGgVTQ4BaBZHQJ+lCYG+sYF1fZQoaAZoCWgPQwhbCd0lMT9xQJSGlFKUaBVL+GgWR0CfpQbR4QjEdX2UKGgGaAloD0MIFZD2P0BEckCUhpRSlGgVTQABaBZHQJ+lan752yN1fZQoaAZoCWgPQwhn170VyVlwQJSGlFKUaBVL+mgWR0CfpY0PpY9xdX2UKGgGaAloD0MIkBX8NsT5cECUhpRSlGgVTQwBaBZHQJ+lomsvIwN1fZQoaAZoCWgPQwid2EP7WGdoQJSGlFKUaBVN6ANoFkdAn6Wo0VJti3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 372, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}