zpn commited on
Commit
e4af72b
·
1 Parent(s): 68f427f

fix: rename

Browse files
Files changed (1) hide show
  1. README.md +7 -7
README.md CHANGED
@@ -2912,9 +2912,9 @@ Trained on the [Nomic Embed](https://arxiv.org/abs/2402.01613) weakly-supervised
2912
  |-----------------------|------------|--------------|---------------------|-----------------|-------------------------|---------------|----------------|-----------|------------------|
2913
  | nomic-embed-text-v1 | 768 | 62.4 | 74.1 | 43.9 | **85.2** | 55.7 | 52.8 | 82.1 | 30.1 |
2914
  | nomic-embed-text-v1.5 | 768 | 62.28 | 73.55 | 43.93 | 84.61 | 55.78 | **53.01** | **81.94** | 30.4 |
2915
- | modernbert-embed | 768 | **62.62** | **74.31** | **44.98** | 83.96 | **56.42** | 52.89 | 81.78 | **31.39** |
2916
- | nomic-embed-text-v1.5 | 256 | 61.04 | 72.1 | 43.16 | 84.09 | 55.18 | 50.81 | 81.34 | |
2917
- | modernbert-embed | 256 | 61.17 | 72.40 | 43.82 | 83.45 | 55.69 | 50.62 | 81.12 | 31.27 |
2918
 
2919
 
2920
 
@@ -2935,7 +2935,7 @@ Most use cases, adding `search_query: ` to the query and `search_document: ` to
2935
  ```python
2936
  from sentence_transformers import SentenceTransformer
2937
 
2938
- model = SentenceTransformer("nomic-ai/modernbert-embed")
2939
 
2940
  query_embeddings = model.encode([
2941
  "search_query: What is TSNE?",
@@ -2960,7 +2960,7 @@ In Sentence Transformers, you can truncate embeddings to a smaller dimension by
2960
  ```python
2961
  from sentence_transformers import SentenceTransformer
2962
 
2963
- model = SentenceTransformer("nomic-ai/modernbert-embed", truncate_dim=256)
2964
 
2965
  query_embeddings = model.encode([
2966
  "search_query: What is TSNE?",
@@ -3003,8 +3003,8 @@ def mean_pooling(model_output, attention_mask):
3003
  queries = ["search_query: What is TSNE?", "search_query: Who is Laurens van der Maaten?"]
3004
  documents = ["search_document: TSNE is a dimensionality reduction algorithm created by Laurens van Der Maaten"]
3005
 
3006
- tokenizer = AutoTokenizer.from_pretrained(".")
3007
- model = AutoModel.from_pretrained(".")
3008
 
3009
  encoded_queries = tokenizer(queries, padding=True, truncation=True, return_tensors="pt")
3010
  encoded_documents = tokenizer(documents, padding=True, truncation=True, return_tensors="pt")
 
2912
  |-----------------------|------------|--------------|---------------------|-----------------|-------------------------|---------------|----------------|-----------|------------------|
2913
  | nomic-embed-text-v1 | 768 | 62.4 | 74.1 | 43.9 | **85.2** | 55.7 | 52.8 | 82.1 | 30.1 |
2914
  | nomic-embed-text-v1.5 | 768 | 62.28 | 73.55 | 43.93 | 84.61 | 55.78 | **53.01** | **81.94** | 30.4 |
2915
+ | modernbert-embed-base | 768 | **62.62** | **74.31** | **44.98** | 83.96 | **56.42** | 52.89 | 81.78 | **31.39** |
2916
+ | nomic-embed-text-v1.5 | 256 | 61.04 | 72.1 | 43.16 | 84.09 | 55.18 | 50.81 | 81.34 | 30.05 |
2917
+ | modernbert-embed-base | 256 | 61.17 | 72.40 | 43.82 | 83.45 | 55.69 | 50.62 | 81.12 | 31.27 |
2918
 
2919
 
2920
 
 
2935
  ```python
2936
  from sentence_transformers import SentenceTransformer
2937
 
2938
+ model = SentenceTransformer("nomic-ai/modernbert-embed-base")
2939
 
2940
  query_embeddings = model.encode([
2941
  "search_query: What is TSNE?",
 
2960
  ```python
2961
  from sentence_transformers import SentenceTransformer
2962
 
2963
+ model = SentenceTransformer("nomic-ai/modernbert-embed-base", truncate_dim=256)
2964
 
2965
  query_embeddings = model.encode([
2966
  "search_query: What is TSNE?",
 
3003
  queries = ["search_query: What is TSNE?", "search_query: Who is Laurens van der Maaten?"]
3004
  documents = ["search_document: TSNE is a dimensionality reduction algorithm created by Laurens van Der Maaten"]
3005
 
3006
+ tokenizer = AutoTokenizer.from_pretrained("nomic-ai/modernbert-embed-base")
3007
+ model = AutoModel.from_pretrained("nomic-ai/modernbert-embed-base")
3008
 
3009
  encoded_queries = tokenizer(queries, padding=True, truncation=True, return_tensors="pt")
3010
  encoded_documents = tokenizer(documents, padding=True, truncation=True, return_tensors="pt")