File size: 2,495 Bytes
a4f2851 fd5b912 a4f2851 fd5b912 a4f2851 fd5b912 a4f2851 15306b2 a4f2851 fd5b912 a4f2851 15306b2 a4f2851 fd5b912 a4f2851 15306b2 e6c60f5 15306b2 a4f2851 fd5b912 a4f2851 fd5b912 a4f2851 e6c60f5 a4f2851 e6c60f5 a4f2851 e6c60f5 a4f2851 e6c60f5 a4f2851 e6c60f5 a4f2851 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
---
language:
- ja
license: other
tags:
- whisper-event
- generated_from_trainer
datasets:
- Elite35P-Server/EliteVoiceProject
metrics:
- wer
base_model: openai/whisper-base
model-index:
- name: Whisper Base Japanese Elite
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Elite35P-Server/EliteVoiceProject twitter
type: Elite35P-Server/EliteVoiceProject
config: twitter
split: test
args: twitter
metrics:
- type: wer
value: 17.073170731707318
name: Wer
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Base Japanese Elite
This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Elite35P-Server/EliteVoiceProject twitter dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4385
- Wer: 17.0732
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 200
- training_steps: 10000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:-----:|:---------------:|:-------:|
| 0.0002 | 111.0 | 1000 | 0.2155 | 9.7561 |
| 0.0001 | 222.0 | 2000 | 0.2448 | 12.1951 |
| 0.0 | 333.0 | 3000 | 0.2674 | 13.4146 |
| 0.0 | 444.0 | 4000 | 0.2943 | 15.8537 |
| 0.0 | 555.0 | 5000 | 0.3182 | 17.0732 |
| 0.0 | 666.0 | 6000 | 0.3501 | 18.9024 |
| 0.0 | 777.0 | 7000 | 0.3732 | 16.4634 |
| 0.0 | 888.0 | 8000 | 0.4025 | 17.0732 |
| 0.0 | 999.0 | 9000 | 0.4178 | 20.1220 |
| 0.0 | 1111.0 | 10000 | 0.4385 | 17.0732 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|