Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# AlignGPT: Multi-modal Large Language Models with Adaptive Alignment Capability
|
3 |
+
[[Project Page](https://aligngpt-vl.github.io/)] [[Paper](https://arxiv.org/abs/2405.14129)] [[Demo](http://47.116.173.89:7870/)] [[Model](https://huggingface.co/nlpzhaof)]
|
4 |
+
|
5 |
+
|
6 |
+
|
7 |
+
Authors: [Fei Zhao*](https://scholar.google.com/citations?user=V01xzWQAAAAJ&hl=zh-CN), Taotian Pang*, Chunhui Li, [Zhen Wu](https://scholar.google.com/citations?user=IoGlgtoAAAAJ&hl=zh-CN), Junjie Guo, Shangyu Xing, [Xinyu Dai](https://scholar.google.com/citations?user=zpWB1CgAAAAJ&hl=zh-CN)
|
8 |
+
|
9 |
+
<div align="center">
|
10 |
+
<img src="./assert/architecture.png" width="800px">
|
11 |
+
</div>
|
12 |
+
|
13 |
+
<!-- ![architecture](./assert/architecture.png) -->
|
14 |
+
|
15 |
+
## News and Updates
|
16 |
+
- [5/24] π₯ We released **AlignGPT: Multi-modal Large Language Models with Adaptive Alignment Capability**. Checkout the [paper](https://arxiv.org/abs/2405.14129) and [demo](http://47.116.173.89:7870/).
|
17 |
+
- [5/24] π₯ The data is not ready yet. We will upload it within a week.
|
18 |
+
|
19 |
+
|
20 |
+
## Contents
|
21 |
+
- [Install](#install)
|
22 |
+
- [Model Zoo](#model-zoo)
|
23 |
+
- [Demo](#demo)
|
24 |
+
- [Training](#training)
|
25 |
+
- [Evaluation](#evaluation)
|
26 |
+
- [Performance](#performance)
|
27 |
+
|
28 |
+
## Install
|
29 |
+
|
30 |
+
### Docker
|
31 |
+
|
32 |
+
We recommend to use docker to prepare the environment.
|
33 |
+
|
34 |
+
1. Clone this repository and navigate to AlignGPT folder
|
35 |
+
|
36 |
+
```bash
|
37 |
+
git clone https://github.com/AlignGPT-VL/AlignGPT.git
|
38 |
+
cd AlignGPT
|
39 |
+
```
|
40 |
+
|
41 |
+
2. Build the docker image
|
42 |
+
|
43 |
+
```bash
|
44 |
+
cd deploy
|
45 |
+
docker build -t aligngpt:1.0 .
|
46 |
+
```
|
47 |
+
|
48 |
+
If your machine cannot connect to github to download the flash attention pip wheel, you can download it manually on https://github.com/Dao-AILab/flash-attention/releases/download/v2.5.5/flash_attn-2.5.5+cu118torch2.1cxx11abiFALSE-cp310-cp310-linux_x86_64.whl and put it to `deploy/flash_attn-2.5.5+cu118torch2.1cxx11abiFALSE-cp310-cp310-linux_x86_64.whl`.
|
49 |
+
|
50 |
+
3. To start the container, run the following command in the project root directory
|
51 |
+
|
52 |
+
```bash
|
53 |
+
docker run --gpus all --ipc=host --network=host --rm -it -v .:/workspace aligngpt:1.0
|
54 |
+
```
|
55 |
+
|
56 |
+
More `-v` options can be added to mount the data and output directories.
|
57 |
+
|
58 |
+
### Conda
|
59 |
+
|
60 |
+
1. Clone this repository and navigate to AlignGPT folder
|
61 |
+
|
62 |
+
```bash
|
63 |
+
git clone https://github.com/AlignGPT-VL/AlignGPT.git
|
64 |
+
cd AlignGPT
|
65 |
+
```
|
66 |
+
|
67 |
+
2. Install Package
|
68 |
+
|
69 |
+
```Shell
|
70 |
+
conda create -n aligngpt python=3.10 -y
|
71 |
+
conda activate aligngpt
|
72 |
+
pip install --upgrade pip # enable PEP 660 support
|
73 |
+
pip install torch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 --index-url https://download.pytorch.org/whl/cu118
|
74 |
+
pip install -r deploy/requirements.txt
|
75 |
+
```
|
76 |
+
|
77 |
+
Finally, you need to install flash-attention manually before running the model.
|
78 |
+
|
79 |
+
## Model Zoo
|
80 |
+
|
81 |
+
Please download the weights for LLM, Vision Backbone and place them in the `./playground/model` folder, we also provide all the weights for the AlignGPT checkpoint.
|
82 |
+
|
83 |
+
| Model | LLM | Vision Backbone | Pre-training | Instruct-tuning |
|
84 |
+
|----------|----------|-----------|---|---|
|
85 |
+
| AlignGPT-7B | [Vicuna 7B](https://huggingface.co/lmsys/vicuna-7b-v1.5) | [CLIP ViT-L/14](https://huggingface.co/openai/clip-vit-large-patch14-336) |[aligngpt-7b-pretrain](https://huggingface.co/nlpzhaof/aligngpt-7b-pretrain/tree/main)| [aligngpt-7b](https://huggingface.co/nlpzhaof/aligngpt-7b/tree/main)|
|
86 |
+
| AlignGPT-13B | [Vicuna 13B](https://huggingface.co/lmsys/vicuna-13b-v1.5) | [CLIP ViT-L/14](https://huggingface.co/openai/clip-vit-large-patch14-336) |[aligngpt-13b-pretrain](https://huggingface.co/nlpzhaof/aligngpt-13b-pretrain/tree/main)| [aligngpt-13b](https://huggingface.co/nlpzhaof/aligngpt-13b/tree/main)|
|
87 |
+
| AlignGPT-LLaMA2 | [LLaMA-2-7B-Chat](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) | [CLIP ViT-L/14](https://huggingface.co/openai/clip-vit-large-patch14-336) |To be released| To be released|
|
88 |
+
| AlignGPT-LLaMA3 | [LLaMA-3-8B-Base](https://huggingface.co/meta-llama/Meta-Llama-3-8B) | [CLIP ViT-L/14](https://huggingface.co/openai/clip-vit-large-patch14-336) |To be released|To be released|
|
89 |
+
|
90 |
+
## Demo
|
91 |
+
|
92 |
+
### Start Gradio UI
|
93 |
+
You can start gradio service with the following command:
|
94 |
+
|
95 |
+
```
|
96 |
+
cd AlignGPT
|
97 |
+
bash start_api.sh
|
98 |
+
```
|
99 |
+
This script will launch three processes: the controller, the Gradio web server, and the model worker, all of which will run in the background. You can view logs of these processes in folder `log/`, and view process status with command `ps -ef | grep src.serve`.
|
100 |
+
|
101 |
+
### CLI Inference
|
102 |
+
Chat about images using AlignGPT without the need of Gradio interface.
|
103 |
+
```
|
104 |
+
python -m src.serve.cli \
|
105 |
+
--model-path playground/model/aligngpt-13b \
|
106 |
+
--image-file "image folder/image.jpg" \
|
107 |
+
```
|
108 |
+
|
109 |
+
## Training
|
110 |
+
|
111 |
+
We place all training data in the `./playground/data` folder. Please download [aligngpt_pretrain_data]() from HuggingFace and place it in `./playground/data`. The details are introduced below.
|
112 |
+
|
113 |
+
### Pre-training
|
114 |
+
* **Dataset**: We use the 558K image-text pairs in the pre-training phase. Organize them in `./playground/data` as follows:
|
115 |
+
|
116 |
+
```
|
117 |
+
βββ LLaVA-Pretrain
|
118 |
+
β βββ blip_laion_cc_sbu_558k_with_similarity_number.json
|
119 |
+
β βββ images
|
120 |
+
```
|
121 |
+
|
122 |
+
* **Run**: You can launch the pre-training phase using the following command:
|
123 |
+
```
|
124 |
+
bash scripts/pretrain.sh
|
125 |
+
```
|
126 |
+
Before running the script of pretraining, you should set the arguments related to **directories** of model checkpoints, data and outputs, *i.e.*, `model_name_or_path`, `data_path`, `image_folder`, `vision_tower` and `output_dir`.
|
127 |
+
|
128 |
+
### Instruction-tuning
|
129 |
+
* **Dataset**: We used 665K image-text pairs/text data in the instruction-tuning phase. The images corresponding to these data include: `COCO`, `GQA`, `OCR-VQA`, `TextVQA`, and `VisualGenome`. Organize them in `./playground/data` as follows:
|
130 |
+
|
131 |
+
```
|
132 |
+
βββ llava_v1_5_mix665k.json
|
133 |
+
βββ coco
|
134 |
+
β βββ train2017
|
135 |
+
βββ gqa
|
136 |
+
β βββ images
|
137 |
+
βββ ocr_vqa
|
138 |
+
β βββ images
|
139 |
+
βββ textvqa
|
140 |
+
β βββ train_images
|
141 |
+
βββ vg
|
142 |
+
βββ VG_100K
|
143 |
+
βββ VG_100K_2
|
144 |
+
```
|
145 |
+
|
146 |
+
* **Run**: You can launch the instruction-tuning stage using the following command:
|
147 |
+
```
|
148 |
+
bash scripts/finetune.sh
|
149 |
+
```
|
150 |
+
Before running the script of instruction tuning, you should set the argument `pretrain_mm_mlp_align`, which is the path where you store the weights of the pre-training phase.
|
151 |
+
|
152 |
+
## Evaluation
|
153 |
+
|
154 |
+
We conduct evaluation on 12 benchmarks. The dataset to be evaluated is placed in `./playground/data/eval`. Please download [aligngpt_eval_data]() from HuggingFace and place it in `./playground/data/eval`. It contains custom annotations, scripts, and prediction files for AlignGPT. Here, we demonstrate how to evaluate the performance of our model on `MME` dataset. We use the following command to run the evaluation stage:
|
155 |
+
```
|
156 |
+
CUDA_VISIBLE_DEVICES=0 bash scripts/eval/mme.sh
|
157 |
+
```
|
158 |
+
You should set the directories of the model checkpoints and datasets in the scripts before running it. The evaluation of other datasets can be found in [Evaluation.md](docs/Evaluation.md).
|
159 |
+
|
160 |
+
## Performance
|
161 |
+
| Model | VQAv2 | GQA | VizWiz | SQA | T-VQA | POPE | MME | MM-Bench | MM-Bench-CN | SEED | LLaVA-Bench-Wild | MM-Vet |
|
162 |
+
|----------|---|---|---|---|---|---|---|---|---|---|---|---|
|
163 |
+
| AlignGPT-7B | 79.1 | 62.9 | 54.2 | 68.5 | 58.4 | 86.0 | 1527.4 | 67.3 | 59.9 | 66.5 | 68.4 | 30.8 |
|
164 |
+
| AlignGPT-13B | 80.0 | 63.6 | 56.4 | 70.3 | 60.2 | 86.2 | 1572.0 | 69.5 | 63.7 | 67.8 | 75.2 | 35.6 |
|
165 |
+
|
166 |
+
## Citation
|
167 |
+
If you find AlignGPT useful for your research and applications, please cite using this BibTeX:
|
168 |
+
```
|
169 |
+
@misc{zhao2024aligngpt,
|
170 |
+
title={AlignGPT: Multi-modal Large Language Models with Adaptive Alignment Capability},
|
171 |
+
author={Fei Zhao and Taotian Pang and Chunhui Li and Zhen Wu and Junjie Guo and Shangyu Xing and Xinyu Dai},
|
172 |
+
year={2024},
|
173 |
+
eprint={2405.14129},
|
174 |
+
archivePrefix={arXiv},
|
175 |
+
primaryClass={cs.CL}
|
176 |
+
}
|
177 |
+
```
|
178 |
+
|
179 |
+
## Acknowledgement
|
180 |
+
We build our project based on [LLaVA: Large Language and Vision Assistant](https://github.com/haotian-liu/LLaVA).
|
181 |
+
|
182 |
+
## License
|
183 |
+
|
184 |
+
[![Code License](https://img.shields.io/badge/Code%20License-Apache_2.0-green.svg)](https://github.com/tatsu-lab/stanford_alpaca/blob/main/LICENSE)
|
185 |
+
[![Data License](https://img.shields.io/badge/Data%20License-CC%20By%20NC%204.0-red.svg)](https://github.com/tatsu-lab/stanford_alpaca/blob/main/DATA_LICENSE)
|
186 |
+
|
187 |
+
The data and checkpoint is intended and licensed for research use only. They are also restricted to uses that follow the license agreement of LLaMA, Vicuna and GPT-4. The dataset is CC BY NC 4.0 (allowing only non-commercial use) and models trained using the dataset should not be used outside of research purposes.
|