nlpzhaof commited on
Commit
6931393
Β·
verified Β·
1 Parent(s): 09e0918

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +187 -0
README.md ADDED
@@ -0,0 +1,187 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ # AlignGPT: Multi-modal Large Language Models with Adaptive Alignment Capability
3
+ [[Project Page](https://aligngpt-vl.github.io/)] [[Paper](https://arxiv.org/abs/2405.14129)] [[Demo](http://47.116.173.89:7870/)] [[Model](https://huggingface.co/nlpzhaof)]
4
+
5
+
6
+
7
+ Authors: [Fei Zhao*](https://scholar.google.com/citations?user=V01xzWQAAAAJ&hl=zh-CN), Taotian Pang*, Chunhui Li, [Zhen Wu](https://scholar.google.com/citations?user=IoGlgtoAAAAJ&hl=zh-CN), Junjie Guo, Shangyu Xing, [Xinyu Dai](https://scholar.google.com/citations?user=zpWB1CgAAAAJ&hl=zh-CN)
8
+
9
+ <div align="center">
10
+ <img src="./assert/architecture.png" width="800px">
11
+ </div>
12
+
13
+ <!-- ![architecture](./assert/architecture.png) -->
14
+
15
+ ## News and Updates
16
+ - [5/24] πŸ”₯ We released **AlignGPT: Multi-modal Large Language Models with Adaptive Alignment Capability**. Checkout the [paper](https://arxiv.org/abs/2405.14129) and [demo](http://47.116.173.89:7870/).
17
+ - [5/24] πŸ”₯ The data is not ready yet. We will upload it within a week.
18
+
19
+
20
+ ## Contents
21
+ - [Install](#install)
22
+ - [Model Zoo](#model-zoo)
23
+ - [Demo](#demo)
24
+ - [Training](#training)
25
+ - [Evaluation](#evaluation)
26
+ - [Performance](#performance)
27
+
28
+ ## Install
29
+
30
+ ### Docker
31
+
32
+ We recommend to use docker to prepare the environment.
33
+
34
+ 1. Clone this repository and navigate to AlignGPT folder
35
+
36
+ ```bash
37
+ git clone https://github.com/AlignGPT-VL/AlignGPT.git
38
+ cd AlignGPT
39
+ ```
40
+
41
+ 2. Build the docker image
42
+
43
+ ```bash
44
+ cd deploy
45
+ docker build -t aligngpt:1.0 .
46
+ ```
47
+
48
+ If your machine cannot connect to github to download the flash attention pip wheel, you can download it manually on https://github.com/Dao-AILab/flash-attention/releases/download/v2.5.5/flash_attn-2.5.5+cu118torch2.1cxx11abiFALSE-cp310-cp310-linux_x86_64.whl and put it to `deploy/flash_attn-2.5.5+cu118torch2.1cxx11abiFALSE-cp310-cp310-linux_x86_64.whl`.
49
+
50
+ 3. To start the container, run the following command in the project root directory
51
+
52
+ ```bash
53
+ docker run --gpus all --ipc=host --network=host --rm -it -v .:/workspace aligngpt:1.0
54
+ ```
55
+
56
+ More `-v` options can be added to mount the data and output directories.
57
+
58
+ ### Conda
59
+
60
+ 1. Clone this repository and navigate to AlignGPT folder
61
+
62
+ ```bash
63
+ git clone https://github.com/AlignGPT-VL/AlignGPT.git
64
+ cd AlignGPT
65
+ ```
66
+
67
+ 2. Install Package
68
+
69
+ ```Shell
70
+ conda create -n aligngpt python=3.10 -y
71
+ conda activate aligngpt
72
+ pip install --upgrade pip # enable PEP 660 support
73
+ pip install torch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 --index-url https://download.pytorch.org/whl/cu118
74
+ pip install -r deploy/requirements.txt
75
+ ```
76
+
77
+ Finally, you need to install flash-attention manually before running the model.
78
+
79
+ ## Model Zoo
80
+
81
+ Please download the weights for LLM, Vision Backbone and place them in the `./playground/model` folder, we also provide all the weights for the AlignGPT checkpoint.
82
+
83
+ | Model | LLM | Vision Backbone | Pre-training | Instruct-tuning |
84
+ |----------|----------|-----------|---|---|
85
+ | AlignGPT-7B | [Vicuna 7B](https://huggingface.co/lmsys/vicuna-7b-v1.5) | [CLIP ViT-L/14](https://huggingface.co/openai/clip-vit-large-patch14-336) |[aligngpt-7b-pretrain](https://huggingface.co/nlpzhaof/aligngpt-7b-pretrain/tree/main)| [aligngpt-7b](https://huggingface.co/nlpzhaof/aligngpt-7b/tree/main)|
86
+ | AlignGPT-13B | [Vicuna 13B](https://huggingface.co/lmsys/vicuna-13b-v1.5) | [CLIP ViT-L/14](https://huggingface.co/openai/clip-vit-large-patch14-336) |[aligngpt-13b-pretrain](https://huggingface.co/nlpzhaof/aligngpt-13b-pretrain/tree/main)| [aligngpt-13b](https://huggingface.co/nlpzhaof/aligngpt-13b/tree/main)|
87
+ | AlignGPT-LLaMA2 | [LLaMA-2-7B-Chat](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) | [CLIP ViT-L/14](https://huggingface.co/openai/clip-vit-large-patch14-336) |To be released| To be released|
88
+ | AlignGPT-LLaMA3 | [LLaMA-3-8B-Base](https://huggingface.co/meta-llama/Meta-Llama-3-8B) | [CLIP ViT-L/14](https://huggingface.co/openai/clip-vit-large-patch14-336) |To be released|To be released|
89
+
90
+ ## Demo
91
+
92
+ ### Start Gradio UI
93
+ You can start gradio service with the following command:
94
+
95
+ ```
96
+ cd AlignGPT
97
+ bash start_api.sh
98
+ ```
99
+ This script will launch three processes: the controller, the Gradio web server, and the model worker, all of which will run in the background. You can view logs of these processes in folder `log/`, and view process status with command `ps -ef | grep src.serve`.
100
+
101
+ ### CLI Inference
102
+ Chat about images using AlignGPT without the need of Gradio interface.
103
+ ```
104
+ python -m src.serve.cli \
105
+ --model-path playground/model/aligngpt-13b \
106
+ --image-file "image folder/image.jpg" \
107
+ ```
108
+
109
+ ## Training
110
+
111
+ We place all training data in the `./playground/data` folder. Please download [aligngpt_pretrain_data]() from HuggingFace and place it in `./playground/data`. The details are introduced below.
112
+
113
+ ### Pre-training
114
+ * **Dataset**: We use the 558K image-text pairs in the pre-training phase. Organize them in `./playground/data` as follows:
115
+
116
+ ```
117
+ β”œβ”€β”€ LLaVA-Pretrain
118
+ β”‚ └── blip_laion_cc_sbu_558k_with_similarity_number.json
119
+ β”‚ └── images
120
+ ```
121
+
122
+ * **Run**: You can launch the pre-training phase using the following command:
123
+ ```
124
+ bash scripts/pretrain.sh
125
+ ```
126
+ Before running the script of pretraining, you should set the arguments related to **directories** of model checkpoints, data and outputs, *i.e.*, `model_name_or_path`, `data_path`, `image_folder`, `vision_tower` and `output_dir`.
127
+
128
+ ### Instruction-tuning
129
+ * **Dataset**: We used 665K image-text pairs/text data in the instruction-tuning phase. The images corresponding to these data include: `COCO`, `GQA`, `OCR-VQA`, `TextVQA`, and `VisualGenome`. Organize them in `./playground/data` as follows:
130
+
131
+ ```
132
+ β”œβ”€β”€ llava_v1_5_mix665k.json
133
+ β”œβ”€β”€ coco
134
+ β”‚ └── train2017
135
+ β”œβ”€β”€ gqa
136
+ β”‚ └── images
137
+ β”œβ”€β”€ ocr_vqa
138
+ β”‚ └── images
139
+ β”œβ”€β”€ textvqa
140
+ β”‚ └── train_images
141
+ └── vg
142
+ β”œβ”€β”€ VG_100K
143
+ └── VG_100K_2
144
+ ```
145
+
146
+ * **Run**: You can launch the instruction-tuning stage using the following command:
147
+ ```
148
+ bash scripts/finetune.sh
149
+ ```
150
+ Before running the script of instruction tuning, you should set the argument `pretrain_mm_mlp_align`, which is the path where you store the weights of the pre-training phase.
151
+
152
+ ## Evaluation
153
+
154
+ We conduct evaluation on 12 benchmarks. The dataset to be evaluated is placed in `./playground/data/eval`. Please download [aligngpt_eval_data]() from HuggingFace and place it in `./playground/data/eval`. It contains custom annotations, scripts, and prediction files for AlignGPT. Here, we demonstrate how to evaluate the performance of our model on `MME` dataset. We use the following command to run the evaluation stage:
155
+ ```
156
+ CUDA_VISIBLE_DEVICES=0 bash scripts/eval/mme.sh
157
+ ```
158
+ You should set the directories of the model checkpoints and datasets in the scripts before running it. The evaluation of other datasets can be found in [Evaluation.md](docs/Evaluation.md).
159
+
160
+ ## Performance
161
+ | Model | VQAv2 | GQA | VizWiz | SQA | T-VQA | POPE | MME | MM-Bench | MM-Bench-CN | SEED | LLaVA-Bench-Wild | MM-Vet |
162
+ |----------|---|---|---|---|---|---|---|---|---|---|---|---|
163
+ | AlignGPT-7B | 79.1 | 62.9 | 54.2 | 68.5 | 58.4 | 86.0 | 1527.4 | 67.3 | 59.9 | 66.5 | 68.4 | 30.8 |
164
+ | AlignGPT-13B | 80.0 | 63.6 | 56.4 | 70.3 | 60.2 | 86.2 | 1572.0 | 69.5 | 63.7 | 67.8 | 75.2 | 35.6 |
165
+
166
+ ## Citation
167
+ If you find AlignGPT useful for your research and applications, please cite using this BibTeX:
168
+ ```
169
+ @misc{zhao2024aligngpt,
170
+ title={AlignGPT: Multi-modal Large Language Models with Adaptive Alignment Capability},
171
+ author={Fei Zhao and Taotian Pang and Chunhui Li and Zhen Wu and Junjie Guo and Shangyu Xing and Xinyu Dai},
172
+ year={2024},
173
+ eprint={2405.14129},
174
+ archivePrefix={arXiv},
175
+ primaryClass={cs.CL}
176
+ }
177
+ ```
178
+
179
+ ## Acknowledgement
180
+ We build our project based on [LLaVA: Large Language and Vision Assistant](https://github.com/haotian-liu/LLaVA).
181
+
182
+ ## License
183
+
184
+ [![Code License](https://img.shields.io/badge/Code%20License-Apache_2.0-green.svg)](https://github.com/tatsu-lab/stanford_alpaca/blob/main/LICENSE)
185
+ [![Data License](https://img.shields.io/badge/Data%20License-CC%20By%20NC%204.0-red.svg)](https://github.com/tatsu-lab/stanford_alpaca/blob/main/DATA_LICENSE)
186
+
187
+ The data and checkpoint is intended and licensed for research use only. They are also restricted to uses that follow the license agreement of LLaMA, Vicuna and GPT-4. The dataset is CC BY NC 4.0 (allowing only non-commercial use) and models trained using the dataset should not be used outside of research purposes.