final_bart_prepro_fix

This model is a fine-tuned version of gogamza/kobart-base-v2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.6100
  • Rouge1: 35.5593
  • Rouge2: 13.0497
  • Rougel: 23.5672
  • Bleu1: 29.5206
  • Bleu2: 17.3914
  • Bleu3: 10.5577
  • Bleu4: 6.1502
  • Rdass: 0.6449
  • Gen Len: 49.7389

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5.0

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Bleu1 Bleu2 Bleu3 Bleu4 Rdass Gen Len
2.1622 1.51 1000 2.6687 35.4366 12.8631 23.1588 29.4018 17.2004 10.3744 6.052 0.6379 49.4266
2.0114 3.02 2000 2.6090 35.1436 13.0347 23.4682 28.8917 17.0965 10.1873 5.896 0.6389 46.1096
1.8758 4.53 3000 2.6100 35.5593 13.0497 23.5672 29.5206 17.3914 10.5577 6.1502 0.6449 49.7389

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.1+cu117
  • Datasets 2.7.1
  • Tokenizers 0.13.2
Downloads last month
1
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.