File size: 20,510 Bytes
3b2d45e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
---
base_model: intfloat/multilingual-e5-large
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1797
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: МультНайтШоу. Выпуск 1. В гостях Джо Байден, поет Мультимати МультНайтШоу
- юмористическое нарисованное вечернее шоу, где обсуждаются актуальные новости
страны и мира, в гости приходят герои настоящего, прошлого и даже будущего.В первом
выпуске мы обсудим актуальные новости недели, посмотрим анимационную версию нового
сериала «Дом Дракона», пригласим в нашу студию небезызвестного президента США
Джо Байдена, увидим новый клип от Мультимати и многое другое.
sentences:
- 'Информационные технологии: Искусственный интеллект'
- 'Образование: Высшее образование'
- 'Массовая культура: Юмор и сатира, Новости и политика: Международные новости'
- source_sentence: СarJitsu. 2 сезон, 4 серия. Сушист vs Оксана «Новиков» CarJitsu
— бои в формате POP MMA, где в вместо ринга бойцы сражаются в салоне автомобиля.
В этом выпуске встретились эпатаж и мастерство! Дракон и Японский самурай, Андрей
«Сушист» Мешков и Александр «Оксана» Новиков! Узнайте, кому удалось порулить этой
машиной! Комментирует YURI THE PROFESSIONAL 18+
sentences:
- 'Книги и литература: Комиксы и графические романы'
- 'Спорт: Борьба, Массовая культура'
- 'Религия и духовность: астрология, События и достопримечательности: Комедия и
стендап'
- source_sentence: ВЫПУСК №4 НЕУДОБНЫЙ СТЕНДАП Новогодний выпуск Неудобного Стендапа
уже на канале! На этот раз за 5000 рублей сразятся Иван Бобровников, Аля Кокушкина
и Егор Константинов. Комики расскажут свои шутки посетителям парка ВДНХ, и выступят
в гончарной мастерской, в раздевалке катка и в аниме-магазине. Кто заберёт бабло,
а кто уйдёт ни с чем определят случайные зрители.
sentences:
- Массовая культура, Карьера, Изобразительное искусство
- Хобби и интересы, Транспорт
- 'Массовая культура: Юмор и сатира'
- source_sentence: МАКСИМ НАРОДНЫЙ Выпуск №65 ГОТОВИМ С АКТЁРОМ СЕРИАЛА «САЛЮТ, НАЧАЛЬНИК»
ДЕНИСОМ ЗАЙНУЛЛИНЫМ В новом выпуске у ведущего канала Максима в гостях актёр театра
и кино Денис Зайнуллин. Максим и Денис готовят бешбармак. Это просто и вкусное
блюдо, которое позволит удивить всех гостей. По вопросам рекламы пишите на email
sentences:
- 'Еда и напитки: Кулинария, Массовая культура'
- Массовая культура, Фильмы и анимация
- 'Бизнес и финансы: Бизнес: Бизнес в ИТ'
- source_sentence: Роман Юнусов и популярный озвучер Карен Арутюнов попали в клуб
богачей В новом выпуске шоу «Спортивный Интерес» Рома Юнусов и Карен Арутюнов
почувствуют себя богатеями или даже мафиози. А всё потому, что им предстоит освоить
вид спорта, куда без членства в клубе не попасть. Да, мы отправили героев на поле
для гольфа. Солнце, трава, песок, клюшка - вот неполный список того, что мешало
ребятам бить по мячу. Ну, а кто выполнил драйв и прошёл лунку быстрее оппонента,
ты узнаешь, посмотрев выпуск до конца.
sentences:
- 'Семья и отношения: Уход за пожилыми людьми'
- Массовая культура, Спорт
- 'Транспорт, Спорт: Автогонки, События и достопримечательности: Спортивные события'
---
# SentenceTransformer based on intfloat/multilingual-e5-large
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) <!-- at revision ab10c1a7f42e74530fe7ae5be82e6d4f11a719eb -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("nizamovtimur/multilingual-e5-large-videotags")
# Run inference
sentences = [
'Роман Юнусов и популярный озвучер Карен Арутюнов попали в клуб богачей В новом выпуске шоу «Спортивный Интерес» Рома Юнусов и Карен Арутюнов почувствуют себя богатеями или даже мафиози. А всё потому, что им предстоит освоить вид спорта, куда без членства в клубе не попасть. Да, мы отправили героев на поле для гольфа. Солнце, трава, песок, клюшка - вот неполный список того, что мешало ребятам бить по мячу. Ну, а кто выполнил драйв и прошёл лунку быстрее оппонента, ты узнаешь, посмотрев выпуск до конца.',
'Массовая культура, Спорт',
'Транспорт, Спорт: Автогонки, События и достопримечательности: Спортивные события',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 1,797 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 |
|:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 12 tokens</li><li>mean: 117.7 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 14.94 tokens</li><li>max: 36 tokens</li></ul> |
* Samples:
| sentence_0 | sentence_1 |
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|
| <code>Пример описания по заданному тегу:<br><br>Техно-Гид Выпуск 16 Новые горизонты домашнего кинотеатра! Сегодня мы погрузимся в мир высоких технологий и рассмотрим, как выбрать идеальную систему для вашего дома. От стерео до многоканального звука – мы разберемся, что действительно важно при покупке. Узнаем о последних новинках рынка домашних кинотеатров и научимся создавать атмосферу настоящего кинозала прямо у себя дома. Подписывайтесь на наш канал, чтобы не пропустить интересные обзоры и полезные советы по выбору бытовой электроники!</code> | <code>Информационные технологии: Бытовая электроника: Домашние развлекательные системы</code> |
| <code>Артмеханика. Игра "Угадай технологию". Игра "Угадай технологию".</code> | <code>Информационные технологии, Массовая культура</code> |
| <code>Лесенка знаний: мастерство I 2 серия I Рисовальщик В гараже Артура Лиза рисует портрет Макса, только он получается … не похожим на Макса! Надо научиться рисовать, узнав все тонкости художественного искусства. Для этого Артур отправляет Лизу и Макса в прошлое, чтобы они узнали все самые важные секреты изобразительного искусства от древности до наших времен.</code> | <code>Фильмы и анимация: Семейные и детские фильмы, Фильмы и анимация: Фильмы и анимация </code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `num_train_epochs`: 10
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 10
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
| Epoch | Step | Training Loss |
|:------:|:----:|:-------------:|
| 2.2222 | 500 | 0.5639 |
| 4.4444 | 1000 | 0.1195 |
| 6.6667 | 1500 | 0.0818 |
| 8.8889 | 2000 | 0.0728 |
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.45.1
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.1
- Tokenizers: 0.20.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |