File size: 20,510 Bytes
3b2d45e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
---
base_model: intfloat/multilingual-e5-large
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1797
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: МультНайтШоу. Выпуск 1. В гостях Джо Байден, поет Мультимати МультНайтШоу
    - юмористическое нарисованное вечернее шоу, где обсуждаются актуальные новости
    страны и мира, в гости приходят герои настоящего, прошлого и даже будущего.В первом
    выпуске мы обсудим актуальные новости недели, посмотрим анимационную версию нового
    сериала «Дом Дракона», пригласим в нашу студию небезызвестного президента США
    Джо Байдена, увидим новый клип от Мультимати и многое другое.
  sentences:
  - 'Информационные технологии: Искусственный интеллект'
  - 'Образование: Высшее образование'
  - 'Массовая культура: Юмор и сатира, Новости и политика: Международные новости'
- source_sentence: СarJitsu. 2 сезон, 4 серия. Сушист vs Оксана «Новиков» CarJitsu
     бои в формате POP MMA, где в вместо ринга бойцы сражаются в салоне автомобиля.
    В этом выпуске встретились эпатаж и мастерство! Дракон и Японский самурай, Андрей
    «Сушист» Мешков и Александр «Оксана» Новиков! Узнайте, кому удалось порулить этой
    машиной! Комментирует YURI THE PROFESSIONAL 18+
  sentences:
  - 'Книги и литература: Комиксы и графические романы'
  - 'Спорт: Борьба, Массовая культура'
  - 'Религия и духовность: астрология, События и достопримечательности: Комедия и
    стендап'
- source_sentence: ВЫПУСК №4 НЕУДОБНЫЙ СТЕНДАП Новогодний выпуск Неудобного Стендапа
    уже на канале! На этот раз за 5000 рублей сразятся Иван Бобровников, Аля Кокушкина
    и Егор Константинов. Комики расскажут свои шутки посетителям парка ВДНХ, и выступят
    в гончарной мастерской, в раздевалке катка и в аниме-магазине. Кто заберёт бабло,
    а кто уйдёт ни с чем определят случайные зрители.
  sentences:
  - Массовая культура, Карьера, Изобразительное искусство
  - Хобби и интересы, Транспорт
  - 'Массовая культура: Юмор и сатира'
- source_sentence: МАКСИМ НАРОДНЫЙ Выпуск №65 ГОТОВИМ С АКТЁРОМ СЕРИАЛА «САЛЮТ, НАЧАЛЬНИК»
    ДЕНИСОМ ЗАЙНУЛЛИНЫМ В новом выпуске у ведущего канала Максима в гостях актёр театра
    и кино Денис Зайнуллин. Максим и Денис готовят бешбармак. Это просто и вкусное
    блюдо, которое позволит удивить всех гостей. По вопросам рекламы пишите на email
  sentences:
  - 'Еда и напитки: Кулинария, Массовая культура'
  - Массовая культура, Фильмы и анимация
  - 'Бизнес и финансы: Бизнес: Бизнес в ИТ'
- source_sentence: Роман Юнусов и популярный озвучер Карен Арутюнов попали в клуб
    богачей В новом выпуске шоу «Спортивный Интерес» Рома Юнусов и Карен Арутюнов
    почувствуют себя богатеями или даже мафиози. А всё потому, что им предстоит освоить
    вид спорта, куда без членства в клубе не попасть. Да, мы отправили героев на поле
    для гольфа. Солнце, трава, песок, клюшка - вот неполный список того, что мешало
    ребятам бить по мячу. Ну, а кто выполнил драйв и прошёл лунку быстрее оппонента,
    ты узнаешь, посмотрев выпуск до конца.
  sentences:
  - 'Семья и отношения: Уход за пожилыми людьми'
  - Массовая культура, Спорт
  - 'Транспорт, Спорт: Автогонки, События и достопримечательности: Спортивные события'
---

# SentenceTransformer based on intfloat/multilingual-e5-large

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) <!-- at revision ab10c1a7f42e74530fe7ae5be82e6d4f11a719eb -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("nizamovtimur/multilingual-e5-large-videotags")
# Run inference
sentences = [
    'Роман Юнусов и популярный озвучер Карен Арутюнов попали в клуб богачей В новом выпуске шоу «Спортивный Интерес» Рома Юнусов и Карен Арутюнов почувствуют себя богатеями или даже мафиози. А всё потому, что им предстоит освоить вид спорта, куда без членства в клубе не попасть. Да, мы отправили героев на поле для гольфа. Солнце, трава, песок, клюшка - вот неполный список того, что мешало ребятам бить по мячу. Ну, а кто выполнил драйв и прошёл лунку быстрее оппонента, ты узнаешь, посмотрев выпуск до конца.',
    'Массовая культура, Спорт',
    'Транспорт, Спорт: Автогонки, События и достопримечательности: Спортивные события',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 1,797 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence_0                                                                          | sentence_1                                                                        |
  |:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                              | string                                                                            |
  | details | <ul><li>min: 12 tokens</li><li>mean: 117.7 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 14.94 tokens</li><li>max: 36 tokens</li></ul> |
* Samples:
  | sentence_0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | sentence_1                                                                                       |
  |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|
  | <code>Пример описания по заданному тегу:<br><br>Техно-Гид  Выпуск 16 Новые горизонты домашнего кинотеатра! Сегодня мы погрузимся в мир высоких технологий и рассмотрим, как выбрать идеальную систему для вашего дома. От стерео до многоканального звука – мы разберемся, что действительно важно при покупке. Узнаем о последних новинках рынка домашних кинотеатров и научимся создавать атмосферу настоящего кинозала прямо у себя дома. Подписывайтесь на наш канал, чтобы не пропустить интересные обзоры и полезные советы по выбору бытовой электроники!</code> | <code>Информационные технологии: Бытовая электроника: Домашние развлекательные системы</code>    |
  | <code>Артмеханика. Игра "Угадай технологию". Игра "Угадай технологию".</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <code>Информационные технологии, Массовая культура</code>                                        |
  | <code>Лесенка знаний: мастерство I 2 серия I Рисовальщик В гараже Артура Лиза рисует портрет Макса, только он получается … не похожим на Макса! Надо научиться рисовать, узнав все тонкости художественного искусства. Для этого Артур отправляет Лизу и Макса в прошлое, чтобы они узнали все самые важные секреты изобразительного искусства от древности до наших времен.</code>                                                                                                                                                                                     | <code>Фильмы и анимация: Семейные и детские фильмы, Фильмы и анимация: Фильмы и анимация </code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `num_train_epochs`: 10
- `multi_dataset_batch_sampler`: round_robin

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 10
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin

</details>

### Training Logs
| Epoch  | Step | Training Loss |
|:------:|:----:|:-------------:|
| 2.2222 | 500  | 0.5639        |
| 4.4444 | 1000 | 0.1195        |
| 6.6667 | 1500 | 0.0818        |
| 8.8889 | 2000 | 0.0728        |


### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.45.1
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.1
- Tokenizers: 0.20.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->