nivashuggingface commited on
Commit
fe8ab9e
·
verified ·
1 Parent(s): b4c5d4a

Upload app.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. app.py +56 -0
app.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import tensorflow as tf
3
+ import numpy as np
4
+ from PIL import Image
5
+ import io
6
+
7
+ # Load the model from Hugging Face
8
+ model = tf.saved_model.load('https://huggingface.co/nivashuggingface/digit-recognition/resolve/main/saved_model')
9
+
10
+ def preprocess_image(img):
11
+ """Preprocess the drawn image for prediction"""
12
+ # Convert to grayscale and resize
13
+ img = img.convert('L')
14
+ img = img.resize((28, 28))
15
+ # Convert to numpy array and normalize
16
+ img_array = np.array(img)
17
+ img_array = img_array.astype('float32') / 255.0
18
+ # Add batch dimension
19
+ img_array = np.expand_dims(img_array, axis=0)
20
+ # Add channel dimension
21
+ img_array = np.expand_dims(img_array, axis=-1)
22
+ return img_array
23
+
24
+ def predict_digit(img):
25
+ """Predict digit from drawn image"""
26
+ # Preprocess the image
27
+ processed_img = preprocess_image(img)
28
+ # Make prediction
29
+ predictions = model(processed_img)
30
+ predicted_digit = tf.argmax(predictions, axis=1).numpy()[0]
31
+ # Get confidence scores
32
+ confidence_scores = tf.nn.softmax(predictions[0]).numpy()
33
+ # Create result string
34
+ result = f"Predicted Digit: {predicted_digit}\n\nConfidence Scores:\n"
35
+ for i, score in enumerate(confidence_scores):
36
+ result += f"Digit {i}: {score:.2%}\n"
37
+ return result
38
+
39
+ # Create Gradio interface
40
+ iface = gr.Interface(
41
+ fn=predict_digit,
42
+ inputs=gr.Image(type="pil", label="Draw a digit (0-9)"),
43
+ outputs=gr.Textbox(label="Prediction Results"),
44
+ title="Digit Recognition with CNN",
45
+ description="Draw a digit (0-9) in the box below. The model will predict which digit you drew.",
46
+ examples=[
47
+ ["examples/0.png"],
48
+ ["examples/1.png"],
49
+ ["examples/2.png"],
50
+ ],
51
+ theme=gr.themes.Soft()
52
+ )
53
+
54
+ # Launch the interface
55
+ if __name__ == "__main__":
56
+ iface.launch()