nisten's picture
Add files using upload-large-folder tool
04f9ed1 verified
raw
history blame
32.8 kB
from __future__ import annotations
import collections
import functools
import logging
import math
import os
import threading
import warnings
from concurrent.futures import Future, ThreadPoolExecutor
from itertools import groupby
from operator import itemgetter
from typing import (
TYPE_CHECKING,
Any,
Callable,
ClassVar,
Generic,
NamedTuple,
Optional,
OrderedDict,
TypeVar,
)
if TYPE_CHECKING:
import mmap
from typing_extensions import ParamSpec
P = ParamSpec("P")
else:
P = TypeVar("P")
T = TypeVar("T")
logger = logging.getLogger("fsspec")
Fetcher = Callable[[int, int], bytes] # Maps (start, end) to bytes
class BaseCache:
"""Pass-though cache: doesn't keep anything, calls every time
Acts as base class for other cachers
Parameters
----------
blocksize: int
How far to read ahead in numbers of bytes
fetcher: func
Function of the form f(start, end) which gets bytes from remote as
specified
size: int
How big this file is
"""
name: ClassVar[str] = "none"
def __init__(self, blocksize: int, fetcher: Fetcher, size: int) -> None:
self.blocksize = blocksize
self.nblocks = 0
self.fetcher = fetcher
self.size = size
self.hit_count = 0
self.miss_count = 0
# the bytes that we actually requested
self.total_requested_bytes = 0
def _fetch(self, start: int | None, stop: int | None) -> bytes:
if start is None:
start = 0
if stop is None:
stop = self.size
if start >= self.size or start >= stop:
return b""
return self.fetcher(start, stop)
def _reset_stats(self) -> None:
"""Reset hit and miss counts for a more ganular report e.g. by file."""
self.hit_count = 0
self.miss_count = 0
self.total_requested_bytes = 0
def _log_stats(self) -> str:
"""Return a formatted string of the cache statistics."""
if self.hit_count == 0 and self.miss_count == 0:
# a cache that does nothing, this is for logs only
return ""
return f" , {self.name}: {self.hit_count} hits, {self.miss_count} misses, {self.total_requested_bytes} total requested bytes"
def __repr__(self) -> str:
# TODO: use rich for better formatting
return f"""
<{self.__class__.__name__}:
block size : {self.blocksize}
block count : {self.nblocks}
file size : {self.size}
cache hits : {self.hit_count}
cache misses: {self.miss_count}
total requested bytes: {self.total_requested_bytes}>
"""
class MMapCache(BaseCache):
"""memory-mapped sparse file cache
Opens temporary file, which is filled blocks-wise when data is requested.
Ensure there is enough disc space in the temporary location.
This cache method might only work on posix
"""
name = "mmap"
def __init__(
self,
blocksize: int,
fetcher: Fetcher,
size: int,
location: str | None = None,
blocks: set[int] | None = None,
) -> None:
super().__init__(blocksize, fetcher, size)
self.blocks = set() if blocks is None else blocks
self.location = location
self.cache = self._makefile()
def _makefile(self) -> mmap.mmap | bytearray:
import mmap
import tempfile
if self.size == 0:
return bytearray()
# posix version
if self.location is None or not os.path.exists(self.location):
if self.location is None:
fd = tempfile.TemporaryFile()
self.blocks = set()
else:
fd = open(self.location, "wb+")
fd.seek(self.size - 1)
fd.write(b"1")
fd.flush()
else:
fd = open(self.location, "r+b")
return mmap.mmap(fd.fileno(), self.size)
def _fetch(self, start: int | None, end: int | None) -> bytes:
logger.debug(f"MMap cache fetching {start}-{end}")
if start is None:
start = 0
if end is None:
end = self.size
if start >= self.size or start >= end:
return b""
start_block = start // self.blocksize
end_block = end // self.blocksize
block_range = range(start_block, end_block + 1)
# Determine which blocks need to be fetched. This sequence is sorted by construction.
need = (i for i in block_range if i not in self.blocks)
# Count the number of blocks already cached
self.hit_count += sum(1 for i in block_range if i in self.blocks)
# Consolidate needed blocks.
# Algorithm adapted from Python 2.x itertools documentation.
# We are grouping an enumerated sequence of blocks. By comparing when the difference
# between an ascending range (provided by enumerate) and the needed block numbers
# we can detect when the block number skips values. The key computes this difference.
# Whenever the difference changes, we know that we have previously cached block(s),
# and a new group is started. In other words, this algorithm neatly groups
# runs of consecutive block numbers so they can be fetched together.
for _, _blocks in groupby(enumerate(need), key=lambda x: x[0] - x[1]):
# Extract the blocks from the enumerated sequence
_blocks = tuple(map(itemgetter(1), _blocks))
# Compute start of first block
sstart = _blocks[0] * self.blocksize
# Compute the end of the last block. Last block may not be full size.
send = min(_blocks[-1] * self.blocksize + self.blocksize, self.size)
# Fetch bytes (could be multiple consecutive blocks)
self.total_requested_bytes += send - sstart
logger.debug(
f"MMap get blocks {_blocks[0]}-{_blocks[-1]} ({sstart}-{send})"
)
self.cache[sstart:send] = self.fetcher(sstart, send)
# Update set of cached blocks
self.blocks.update(_blocks)
# Update cache statistics with number of blocks we had to cache
self.miss_count += len(_blocks)
return self.cache[start:end]
def __getstate__(self) -> dict[str, Any]:
state = self.__dict__.copy()
# Remove the unpicklable entries.
del state["cache"]
return state
def __setstate__(self, state: dict[str, Any]) -> None:
# Restore instance attributes
self.__dict__.update(state)
self.cache = self._makefile()
class ReadAheadCache(BaseCache):
"""Cache which reads only when we get beyond a block of data
This is a much simpler version of BytesCache, and does not attempt to
fill holes in the cache or keep fragments alive. It is best suited to
many small reads in a sequential order (e.g., reading lines from a file).
"""
name = "readahead"
def __init__(self, blocksize: int, fetcher: Fetcher, size: int) -> None:
super().__init__(blocksize, fetcher, size)
self.cache = b""
self.start = 0
self.end = 0
def _fetch(self, start: int | None, end: int | None) -> bytes:
if start is None:
start = 0
if end is None or end > self.size:
end = self.size
if start >= self.size or start >= end:
return b""
l = end - start
if start >= self.start and end <= self.end:
# cache hit
self.hit_count += 1
return self.cache[start - self.start : end - self.start]
elif self.start <= start < self.end:
# partial hit
self.miss_count += 1
part = self.cache[start - self.start :]
l -= len(part)
start = self.end
else:
# miss
self.miss_count += 1
part = b""
end = min(self.size, end + self.blocksize)
self.total_requested_bytes += end - start
self.cache = self.fetcher(start, end) # new block replaces old
self.start = start
self.end = self.start + len(self.cache)
return part + self.cache[:l]
class FirstChunkCache(BaseCache):
"""Caches the first block of a file only
This may be useful for file types where the metadata is stored in the header,
but is randomly accessed.
"""
name = "first"
def __init__(self, blocksize: int, fetcher: Fetcher, size: int) -> None:
if blocksize > size:
# this will buffer the whole thing
blocksize = size
super().__init__(blocksize, fetcher, size)
self.cache: bytes | None = None
def _fetch(self, start: int | None, end: int | None) -> bytes:
start = start or 0
if start > self.size:
logger.debug("FirstChunkCache: requested start > file size")
return b""
end = min(end, self.size)
if start < self.blocksize:
if self.cache is None:
self.miss_count += 1
if end > self.blocksize:
self.total_requested_bytes += end
data = self.fetcher(0, end)
self.cache = data[: self.blocksize]
return data[start:]
self.cache = self.fetcher(0, self.blocksize)
self.total_requested_bytes += self.blocksize
part = self.cache[start:end]
if end > self.blocksize:
self.total_requested_bytes += end - self.blocksize
part += self.fetcher(self.blocksize, end)
self.hit_count += 1
return part
else:
self.miss_count += 1
self.total_requested_bytes += end - start
return self.fetcher(start, end)
class BlockCache(BaseCache):
"""
Cache holding memory as a set of blocks.
Requests are only ever made ``blocksize`` at a time, and are
stored in an LRU cache. The least recently accessed block is
discarded when more than ``maxblocks`` are stored.
Parameters
----------
blocksize : int
The number of bytes to store in each block.
Requests are only ever made for ``blocksize``, so this
should balance the overhead of making a request against
the granularity of the blocks.
fetcher : Callable
size : int
The total size of the file being cached.
maxblocks : int
The maximum number of blocks to cache for. The maximum memory
use for this cache is then ``blocksize * maxblocks``.
"""
name = "blockcache"
def __init__(
self, blocksize: int, fetcher: Fetcher, size: int, maxblocks: int = 32
) -> None:
super().__init__(blocksize, fetcher, size)
self.nblocks = math.ceil(size / blocksize)
self.maxblocks = maxblocks
self._fetch_block_cached = functools.lru_cache(maxblocks)(self._fetch_block)
def cache_info(self):
"""
The statistics on the block cache.
Returns
-------
NamedTuple
Returned directly from the LRU Cache used internally.
"""
return self._fetch_block_cached.cache_info()
def __getstate__(self) -> dict[str, Any]:
state = self.__dict__
del state["_fetch_block_cached"]
return state
def __setstate__(self, state: dict[str, Any]) -> None:
self.__dict__.update(state)
self._fetch_block_cached = functools.lru_cache(state["maxblocks"])(
self._fetch_block
)
def _fetch(self, start: int | None, end: int | None) -> bytes:
if start is None:
start = 0
if end is None:
end = self.size
if start >= self.size or start >= end:
return b""
# byte position -> block numbers
start_block_number = start // self.blocksize
end_block_number = end // self.blocksize
# these are cached, so safe to do multiple calls for the same start and end.
for block_number in range(start_block_number, end_block_number + 1):
self._fetch_block_cached(block_number)
return self._read_cache(
start,
end,
start_block_number=start_block_number,
end_block_number=end_block_number,
)
def _fetch_block(self, block_number: int) -> bytes:
"""
Fetch the block of data for `block_number`.
"""
if block_number > self.nblocks:
raise ValueError(
f"'block_number={block_number}' is greater than "
f"the number of blocks ({self.nblocks})"
)
start = block_number * self.blocksize
end = start + self.blocksize
self.total_requested_bytes += end - start
self.miss_count += 1
logger.info("BlockCache fetching block %d", block_number)
block_contents = super()._fetch(start, end)
return block_contents
def _read_cache(
self, start: int, end: int, start_block_number: int, end_block_number: int
) -> bytes:
"""
Read from our block cache.
Parameters
----------
start, end : int
The start and end byte positions.
start_block_number, end_block_number : int
The start and end block numbers.
"""
start_pos = start % self.blocksize
end_pos = end % self.blocksize
self.hit_count += 1
if start_block_number == end_block_number:
block: bytes = self._fetch_block_cached(start_block_number)
return block[start_pos:end_pos]
else:
# read from the initial
out = [self._fetch_block_cached(start_block_number)[start_pos:]]
# intermediate blocks
# Note: it'd be nice to combine these into one big request. However
# that doesn't play nicely with our LRU cache.
out.extend(
map(
self._fetch_block_cached,
range(start_block_number + 1, end_block_number),
)
)
# final block
out.append(self._fetch_block_cached(end_block_number)[:end_pos])
return b"".join(out)
class BytesCache(BaseCache):
"""Cache which holds data in a in-memory bytes object
Implements read-ahead by the block size, for semi-random reads progressing
through the file.
Parameters
----------
trim: bool
As we read more data, whether to discard the start of the buffer when
we are more than a blocksize ahead of it.
"""
name: ClassVar[str] = "bytes"
def __init__(
self, blocksize: int, fetcher: Fetcher, size: int, trim: bool = True
) -> None:
super().__init__(blocksize, fetcher, size)
self.cache = b""
self.start: int | None = None
self.end: int | None = None
self.trim = trim
def _fetch(self, start: int | None, end: int | None) -> bytes:
# TODO: only set start/end after fetch, in case it fails?
# is this where retry logic might go?
if start is None:
start = 0
if end is None:
end = self.size
if start >= self.size or start >= end:
return b""
if (
self.start is not None
and start >= self.start
and self.end is not None
and end < self.end
):
# cache hit: we have all the required data
offset = start - self.start
self.hit_count += 1
return self.cache[offset : offset + end - start]
if self.blocksize:
bend = min(self.size, end + self.blocksize)
else:
bend = end
if bend == start or start > self.size:
return b""
if (self.start is None or start < self.start) and (
self.end is None or end > self.end
):
# First read, or extending both before and after
self.total_requested_bytes += bend - start
self.miss_count += 1
self.cache = self.fetcher(start, bend)
self.start = start
else:
assert self.start is not None
assert self.end is not None
self.miss_count += 1
if start < self.start:
if self.end is None or self.end - end > self.blocksize:
self.total_requested_bytes += bend - start
self.cache = self.fetcher(start, bend)
self.start = start
else:
self.total_requested_bytes += self.start - start
new = self.fetcher(start, self.start)
self.start = start
self.cache = new + self.cache
elif self.end is not None and bend > self.end:
if self.end > self.size:
pass
elif end - self.end > self.blocksize:
self.total_requested_bytes += bend - start
self.cache = self.fetcher(start, bend)
self.start = start
else:
self.total_requested_bytes += bend - self.end
new = self.fetcher(self.end, bend)
self.cache = self.cache + new
self.end = self.start + len(self.cache)
offset = start - self.start
out = self.cache[offset : offset + end - start]
if self.trim:
num = (self.end - self.start) // (self.blocksize + 1)
if num > 1:
self.start += self.blocksize * num
self.cache = self.cache[self.blocksize * num :]
return out
def __len__(self) -> int:
return len(self.cache)
class AllBytes(BaseCache):
"""Cache entire contents of the file"""
name: ClassVar[str] = "all"
def __init__(
self,
blocksize: int | None = None,
fetcher: Fetcher | None = None,
size: int | None = None,
data: bytes | None = None,
) -> None:
super().__init__(blocksize, fetcher, size) # type: ignore[arg-type]
if data is None:
self.miss_count += 1
self.total_requested_bytes += self.size
data = self.fetcher(0, self.size)
self.data = data
def _fetch(self, start: int | None, stop: int | None) -> bytes:
self.hit_count += 1
return self.data[start:stop]
class KnownPartsOfAFile(BaseCache):
"""
Cache holding known file parts.
Parameters
----------
blocksize: int
How far to read ahead in numbers of bytes
fetcher: func
Function of the form f(start, end) which gets bytes from remote as
specified
size: int
How big this file is
data: dict
A dictionary mapping explicit `(start, stop)` file-offset tuples
with known bytes.
strict: bool, default True
Whether to fetch reads that go beyond a known byte-range boundary.
If `False`, any read that ends outside a known part will be zero
padded. Note that zero padding will not be used for reads that
begin outside a known byte-range.
"""
name: ClassVar[str] = "parts"
def __init__(
self,
blocksize: int,
fetcher: Fetcher,
size: int,
data: Optional[dict[tuple[int, int], bytes]] = None,
strict: bool = True,
**_: Any,
):
super().__init__(blocksize, fetcher, size)
self.strict = strict
# simple consolidation of contiguous blocks
if data:
old_offsets = sorted(data.keys())
offsets = [old_offsets[0]]
blocks = [data.pop(old_offsets[0])]
for start, stop in old_offsets[1:]:
start0, stop0 = offsets[-1]
if start == stop0:
offsets[-1] = (start0, stop)
blocks[-1] += data.pop((start, stop))
else:
offsets.append((start, stop))
blocks.append(data.pop((start, stop)))
self.data = dict(zip(offsets, blocks))
else:
self.data = {}
def _fetch(self, start: int | None, stop: int | None) -> bytes:
if start is None:
start = 0
if stop is None:
stop = self.size
out = b""
for (loc0, loc1), data in self.data.items():
# If self.strict=False, use zero-padded data
# for reads beyond the end of a "known" buffer
if loc0 <= start < loc1:
off = start - loc0
out = data[off : off + stop - start]
if not self.strict or loc0 <= stop <= loc1:
# The request is within a known range, or
# it begins within a known range, and we
# are allowed to pad reads beyond the
# buffer with zero
out += b"\x00" * (stop - start - len(out))
self.hit_count += 1
return out
else:
# The request ends outside a known range,
# and we are being "strict" about reads
# beyond the buffer
start = loc1
break
# We only get here if there is a request outside the
# known parts of the file. In an ideal world, this
# should never happen
if self.fetcher is None:
# We cannot fetch the data, so raise an error
raise ValueError(f"Read is outside the known file parts: {(start, stop)}. ")
# We can fetch the data, but should warn the user
# that this may be slow
warnings.warn(
f"Read is outside the known file parts: {(start, stop)}. "
f"IO/caching performance may be poor!"
)
logger.debug(f"KnownPartsOfAFile cache fetching {start}-{stop}")
self.total_requested_bytes += stop - start
self.miss_count += 1
return out + super()._fetch(start, stop)
class UpdatableLRU(Generic[P, T]):
"""
Custom implementation of LRU cache that allows updating keys
Used by BackgroudBlockCache
"""
class CacheInfo(NamedTuple):
hits: int
misses: int
maxsize: int
currsize: int
def __init__(self, func: Callable[P, T], max_size: int = 128) -> None:
self._cache: OrderedDict[Any, T] = collections.OrderedDict()
self._func = func
self._max_size = max_size
self._hits = 0
self._misses = 0
self._lock = threading.Lock()
def __call__(self, *args: P.args, **kwargs: P.kwargs) -> T:
if kwargs:
raise TypeError(f"Got unexpected keyword argument {kwargs.keys()}")
with self._lock:
if args in self._cache:
self._cache.move_to_end(args)
self._hits += 1
return self._cache[args]
result = self._func(*args, **kwargs)
with self._lock:
self._cache[args] = result
self._misses += 1
if len(self._cache) > self._max_size:
self._cache.popitem(last=False)
return result
def is_key_cached(self, *args: Any) -> bool:
with self._lock:
return args in self._cache
def add_key(self, result: T, *args: Any) -> None:
with self._lock:
self._cache[args] = result
if len(self._cache) > self._max_size:
self._cache.popitem(last=False)
def cache_info(self) -> UpdatableLRU.CacheInfo:
with self._lock:
return self.CacheInfo(
maxsize=self._max_size,
currsize=len(self._cache),
hits=self._hits,
misses=self._misses,
)
class BackgroundBlockCache(BaseCache):
"""
Cache holding memory as a set of blocks with pre-loading of
the next block in the background.
Requests are only ever made ``blocksize`` at a time, and are
stored in an LRU cache. The least recently accessed block is
discarded when more than ``maxblocks`` are stored. If the
next block is not in cache, it is loaded in a separate thread
in non-blocking way.
Parameters
----------
blocksize : int
The number of bytes to store in each block.
Requests are only ever made for ``blocksize``, so this
should balance the overhead of making a request against
the granularity of the blocks.
fetcher : Callable
size : int
The total size of the file being cached.
maxblocks : int
The maximum number of blocks to cache for. The maximum memory
use for this cache is then ``blocksize * maxblocks``.
"""
name: ClassVar[str] = "background"
def __init__(
self, blocksize: int, fetcher: Fetcher, size: int, maxblocks: int = 32
) -> None:
super().__init__(blocksize, fetcher, size)
self.nblocks = math.ceil(size / blocksize)
self.maxblocks = maxblocks
self._fetch_block_cached = UpdatableLRU(self._fetch_block, maxblocks)
self._thread_executor = ThreadPoolExecutor(max_workers=1)
self._fetch_future_block_number: int | None = None
self._fetch_future: Future[bytes] | None = None
self._fetch_future_lock = threading.Lock()
def cache_info(self) -> UpdatableLRU.CacheInfo:
"""
The statistics on the block cache.
Returns
-------
NamedTuple
Returned directly from the LRU Cache used internally.
"""
return self._fetch_block_cached.cache_info()
def __getstate__(self) -> dict[str, Any]:
state = self.__dict__
del state["_fetch_block_cached"]
del state["_thread_executor"]
del state["_fetch_future_block_number"]
del state["_fetch_future"]
del state["_fetch_future_lock"]
return state
def __setstate__(self, state) -> None:
self.__dict__.update(state)
self._fetch_block_cached = UpdatableLRU(self._fetch_block, state["maxblocks"])
self._thread_executor = ThreadPoolExecutor(max_workers=1)
self._fetch_future_block_number = None
self._fetch_future = None
self._fetch_future_lock = threading.Lock()
def _fetch(self, start: int | None, end: int | None) -> bytes:
if start is None:
start = 0
if end is None:
end = self.size
if start >= self.size or start >= end:
return b""
# byte position -> block numbers
start_block_number = start // self.blocksize
end_block_number = end // self.blocksize
fetch_future_block_number = None
fetch_future = None
with self._fetch_future_lock:
# Background thread is running. Check we we can or must join it.
if self._fetch_future is not None:
assert self._fetch_future_block_number is not None
if self._fetch_future.done():
logger.info("BlockCache joined background fetch without waiting.")
self._fetch_block_cached.add_key(
self._fetch_future.result(), self._fetch_future_block_number
)
# Cleanup the fetch variables. Done with fetching the block.
self._fetch_future_block_number = None
self._fetch_future = None
else:
# Must join if we need the block for the current fetch
must_join = bool(
start_block_number
<= self._fetch_future_block_number
<= end_block_number
)
if must_join:
# Copy to the local variables to release lock
# before waiting for result
fetch_future_block_number = self._fetch_future_block_number
fetch_future = self._fetch_future
# Cleanup the fetch variables. Have a local copy.
self._fetch_future_block_number = None
self._fetch_future = None
# Need to wait for the future for the current read
if fetch_future is not None:
logger.info("BlockCache waiting for background fetch.")
# Wait until result and put it in cache
self._fetch_block_cached.add_key(
fetch_future.result(), fetch_future_block_number
)
# these are cached, so safe to do multiple calls for the same start and end.
for block_number in range(start_block_number, end_block_number + 1):
self._fetch_block_cached(block_number)
# fetch next block in the background if nothing is running in the background,
# the block is within file and it is not already cached
end_block_plus_1 = end_block_number + 1
with self._fetch_future_lock:
if (
self._fetch_future is None
and end_block_plus_1 <= self.nblocks
and not self._fetch_block_cached.is_key_cached(end_block_plus_1)
):
self._fetch_future_block_number = end_block_plus_1
self._fetch_future = self._thread_executor.submit(
self._fetch_block, end_block_plus_1, "async"
)
return self._read_cache(
start,
end,
start_block_number=start_block_number,
end_block_number=end_block_number,
)
def _fetch_block(self, block_number: int, log_info: str = "sync") -> bytes:
"""
Fetch the block of data for `block_number`.
"""
if block_number > self.nblocks:
raise ValueError(
f"'block_number={block_number}' is greater than "
f"the number of blocks ({self.nblocks})"
)
start = block_number * self.blocksize
end = start + self.blocksize
logger.info("BlockCache fetching block (%s) %d", log_info, block_number)
self.total_requested_bytes += end - start
self.miss_count += 1
block_contents = super()._fetch(start, end)
return block_contents
def _read_cache(
self, start: int, end: int, start_block_number: int, end_block_number: int
) -> bytes:
"""
Read from our block cache.
Parameters
----------
start, end : int
The start and end byte positions.
start_block_number, end_block_number : int
The start and end block numbers.
"""
start_pos = start % self.blocksize
end_pos = end % self.blocksize
# kind of pointless to count this as a hit, but it is
self.hit_count += 1
if start_block_number == end_block_number:
block = self._fetch_block_cached(start_block_number)
return block[start_pos:end_pos]
else:
# read from the initial
out = [self._fetch_block_cached(start_block_number)[start_pos:]]
# intermediate blocks
# Note: it'd be nice to combine these into one big request. However
# that doesn't play nicely with our LRU cache.
out.extend(
map(
self._fetch_block_cached,
range(start_block_number + 1, end_block_number),
)
)
# final block
out.append(self._fetch_block_cached(end_block_number)[:end_pos])
return b"".join(out)
caches: dict[str | None, type[BaseCache]] = {
# one custom case
None: BaseCache,
}
def register_cache(cls: type[BaseCache], clobber: bool = False) -> None:
"""'Register' cache implementation.
Parameters
----------
clobber: bool, optional
If set to True (default is False) - allow to overwrite existing
entry.
Raises
------
ValueError
"""
name = cls.name
if not clobber and name in caches:
raise ValueError(f"Cache with name {name!r} is already known: {caches[name]}")
caches[name] = cls
for c in (
BaseCache,
MMapCache,
BytesCache,
ReadAheadCache,
BlockCache,
FirstChunkCache,
AllBytes,
KnownPartsOfAFile,
BackgroundBlockCache,
):
register_cache(c)