File size: 1,215 Bytes
67500a4
0f2bfb0
67500a4
593654e
67500a4
 
1952c01
67500a4
 
0f2bfb0
1952c01
b8b20fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
---
library_name: UniDepth
tags:
- monocular-metric-depth-estimation
- pytorch_model_hub_mixin
- model_hub_mixin
repo_url: https://github.com/lpiccinelli-eth/UniDepth
---

This model has been pushed to the Hub using **UniDepth**:
- Repo: https://github.com/lpiccinelli-eth/UniDepth

## Installation

First install the UniDepth package as follows:

```python
!git clone -b add_hf https://github.com/NielsRogge/UniDepth.git
!cd UniDepth
!pip install -r requirements.txt
```

## Usage

Next, one can load the model and perform inference as follows:

```python
from unidepth.models import UniDepthV1HF
import numpy as np
from PIL import Image

model = UniDepthV1HF.from_pretrained("nielsr/unidepth-v1-convnext-large")

# Move to CUDA, if any
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)

# Load the RGB image and the normalization will be taken care of by the model
rgb = torch.from_numpy(np.array(Image.open(image_path))).permute(2, 0, 1) # C, H, W

predictions = model.infer(rgb)

# Metric Depth Estimation
depth = predictions["depth"]

# Point Cloud in Camera Coordinate
xyz = predictions["points"]

# Intrinsics Prediction
intrinsics = predictions["intrinsics"]
```