nickprock commited on
Commit
6ce324b
1 Parent(s): 5c6c816

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +22 -1
README.md CHANGED
@@ -8,4 +8,25 @@ library_name: sentence-transformers
8
  pipeline_tag: text-classification
9
  tags:
10
  - cross-encoder
11
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  pipeline_tag: text-classification
9
  tags:
10
  - cross-encoder
11
+ ---
12
+
13
+ # Cross-Encoder for STSB-Multi
14
+ This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class.
15
+ The original model is [dbmdz/bert-base-italian-uncased](https://huggingface.co/dbmdz/bert-base-italian-uncased).
16
+
17
+ ## Training Data
18
+ This model was trained on the [STS benchmark dataset](http://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark), in particular the italian translation. The model will predict a score between 0 and 1 how for the semantic similarity of two sentences.
19
+
20
+
21
+ ## Usage and Performance
22
+
23
+ Pre-trained models can be used like this:
24
+ ```
25
+ from sentence_transformers import CrossEncoder
26
+ model = CrossEncoder('model_name')
27
+ scores = model.predict([('Sentence 1', 'Sentence 2'), ('Sentence 3', 'Sentence 4')])
28
+ ```
29
+
30
+ The model will predict scores for the pairs `('Sentence 1', 'Sentence 2')` and `('Sentence 3', 'Sentence 4')`.
31
+
32
+ You can use this model also without sentence_transformers and by just using Transformers ``AutoModel`` class