nguyenvulebinh
commited on
Commit
•
3a205ff
1
Parent(s):
fd4d05b
Update README.md
Browse files
README.md
CHANGED
@@ -13,7 +13,7 @@ license: cc-by-nc-4.0
|
|
13 |
|
14 |
We use wav2vec2 architecture for doing Self-Supervised learning
|
15 |
|
16 |
-
<img src="https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/wav2vec2.png" width=
|
17 |
|
18 |
## Data
|
19 |
|
@@ -22,10 +22,12 @@ Our self-supervised model is pre-trained on a massive audio set of 13k hours of
|
|
22 |
- Noise audio
|
23 |
- Conversation
|
24 |
- Multi-gender and dialects
|
|
|
25 |
|
26 |
## Download
|
27 |
|
28 |
-
We have already upload our pre-trained model to the Huggingface.
|
|
|
29 |
- [Based version](https://huggingface.co/nguyenvulebinh/wav2vec2-base-vi) ~ 95M params
|
30 |
- [Large version](https://huggingface.co/nguyenvulebinh/wav2vec2-large-vi) ~ 317M params
|
31 |
|
@@ -44,6 +46,56 @@ processor = Wav2Vec2Processor.from_pretrained(model_name)
|
|
44 |
|
45 |
Since our model has the same architecture as the English wav2vec2 version, you can use [this notebook](https://colab.research.google.com/drive/1FjTsqbYKphl9kL-eILgUc-bl4zVThL8F?usp=sharing) for more information on how to fine-tune the model.
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
## Contact
|
48 |
|
49 | |
@@ -51,3 +103,4 @@ [email protected] / [email protected]
|
|
51 |
[![Follow](https://img.shields.io/twitter/follow/nguyenvulebinh?style=social)](https://twitter.com/intent/follow?screen_name=nguyenvulebinh)
|
52 |
|
53 |
|
|
|
|
13 |
|
14 |
We use wav2vec2 architecture for doing Self-Supervised learning
|
15 |
|
16 |
+
<img src="https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/wav2vec2.png" width=75% height=75%>
|
17 |
|
18 |
## Data
|
19 |
|
|
|
22 |
- Noise audio
|
23 |
- Conversation
|
24 |
- Multi-gender and dialects
|
25 |
+
|
26 |
|
27 |
## Download
|
28 |
|
29 |
+
We have already upload our pre-trained model to the Huggingface. The base model trained 35 epochs and the large model trained 20 epochs in about 30 days using TPU V3-8.
|
30 |
+
|
31 |
- [Based version](https://huggingface.co/nguyenvulebinh/wav2vec2-base-vi) ~ 95M params
|
32 |
- [Large version](https://huggingface.co/nguyenvulebinh/wav2vec2-large-vi) ~ 317M params
|
33 |
|
|
|
46 |
|
47 |
Since our model has the same architecture as the English wav2vec2 version, you can use [this notebook](https://colab.research.google.com/drive/1FjTsqbYKphl9kL-eILgUc-bl4zVThL8F?usp=sharing) for more information on how to fine-tune the model.
|
48 |
|
49 |
+
## Finetuned version
|
50 |
+
|
51 |
+
### VLSP 2020 ASR dataset
|
52 |
+
|
53 |
+
Benchmark WER result on VLSP T1 testset:
|
54 |
+
|
55 |
+
| | [base model](https://huggingface.co/nguyenvulebinh/wav2vec2-base-vi-vlsp2020) | [large model](https://huggingface.co/nguyenvulebinh/wav2vec2-large-vi-vlsp2020) |
|
56 |
+
|---|---|---|
|
57 |
+
|without LM| 8.66 | 6.90 |
|
58 |
+
|with 5-grams LM| 6.53 | 5.32 |
|
59 |
+
|
60 |
+
Usage
|
61 |
+
|
62 |
+
```python
|
63 |
+
#pytorch
|
64 |
+
#!pip install transformers==4.20.0
|
65 |
+
#!pip install https://github.com/kpu/kenlm/archive/master.zip
|
66 |
+
#!pip install pyctcdecode==0.4.0
|
67 |
+
from transformers.file_utils import cached_path, hf_bucket_url
|
68 |
+
from importlib.machinery import SourceFileLoader
|
69 |
+
from transformers import Wav2Vec2ProcessorWithLM
|
70 |
+
from IPython.lib.display import Audio
|
71 |
+
import torchaudio
|
72 |
+
import torch
|
73 |
+
|
74 |
+
# Load model & processor
|
75 |
+
model_name = "nguyenvulebinh/wav2vec2-base-vi-vlsp2020"
|
76 |
+
# model_name = "nguyenvulebinh/wav2vec2-large-vi-vlsp2020"
|
77 |
+
model = SourceFileLoader("model", cached_path(hf_bucket_url(model_name,filename="model_handling.py"))).load_module().Wav2Vec2ForCTC.from_pretrained(model_name)
|
78 |
+
processor = Wav2Vec2ProcessorWithLM.from_pretrained(model_name)
|
79 |
+
|
80 |
+
# Load an example audio (16k)
|
81 |
+
audio, sample_rate = torchaudio.load(cached_path(hf_bucket_url(model_name, filename="t2_0000006682.wav")))
|
82 |
+
input_data = processor.feature_extractor(audio[0], sampling_rate=16000, return_tensors='pt')
|
83 |
+
|
84 |
+
# Infer
|
85 |
+
output = model(**input_data)
|
86 |
+
|
87 |
+
# Output transcript without LM
|
88 |
+
print(processor.tokenizer.decode(output.logits.argmax(dim=-1)[0].detach().cpu().numpy()))
|
89 |
+
|
90 |
+
# Output transcript with LM
|
91 |
+
print(processor.decode(output.logits.cpu().detach().numpy()[0], beam_width=100).text)
|
92 |
+
```
|
93 |
+
|
94 |
+
## Acknowledgment
|
95 |
+
|
96 |
+
- We would like to thank the Google TPU Research Cloud (TRC) program and Soonson Kwon (Google ML Ecosystem programs Lead) for their support.
|
97 |
+
- Special thanks to my colleagues at [VietAI](https://vietai.org/) and [VAIS](https://vais.vn/) for their advice.
|
98 |
+
|
99 |
## Contact
|
100 |
|
101 | |
|
|
103 |
[![Follow](https://img.shields.io/twitter/follow/nguyenvulebinh?style=social)](https://twitter.com/intent/follow?screen_name=nguyenvulebinh)
|
104 |
|
105 |
|
106 |
+
|