nguyenvulebinh
commited on
Commit
·
90a61c9
1
Parent(s):
9fee0d7
Upload envibert_tokenizer.py
Browse files- envibert_tokenizer.py +317 -0
envibert_tokenizer.py
ADDED
@@ -0,0 +1,317 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# !pip install sentencepiece==0.1.96 transformers==4.10.0
|
2 |
+
import sentencepiece as spm
|
3 |
+
import os
|
4 |
+
from transformers import PreTrainedTokenizer
|
5 |
+
from collections import Counter
|
6 |
+
from typing import List, Optional
|
7 |
+
|
8 |
+
|
9 |
+
class RobertaTokenizer(PreTrainedTokenizer):
|
10 |
+
def __init__(
|
11 |
+
self,
|
12 |
+
pretrained_file,
|
13 |
+
bos_token="<s>",
|
14 |
+
eos_token="</s>",
|
15 |
+
sep_token="</s>",
|
16 |
+
cls_token="<s>",
|
17 |
+
unk_token="<unk>",
|
18 |
+
pad_token="<pad>",
|
19 |
+
mask_token="<mask>",
|
20 |
+
**kwargs
|
21 |
+
):
|
22 |
+
super().__init__(
|
23 |
+
bos_token=bos_token,
|
24 |
+
eos_token=eos_token,
|
25 |
+
unk_token=unk_token,
|
26 |
+
sep_token=sep_token,
|
27 |
+
cls_token=cls_token,
|
28 |
+
pad_token=pad_token,
|
29 |
+
mask_token=mask_token,
|
30 |
+
**kwargs,
|
31 |
+
)
|
32 |
+
|
33 |
+
# load bpe model and vocab file
|
34 |
+
sentencepiece_model = os.path.join(pretrained_file, 'sentencepiece.bpe.model')
|
35 |
+
vocab_file = os.path.join(pretrained_file, 'dict.txt')
|
36 |
+
self.sp_model = spm.SentencePieceProcessor()
|
37 |
+
self.sp_model.Load(
|
38 |
+
sentencepiece_model) # please dont use anything from sp_model bcz it makes everything goes wrong
|
39 |
+
|
40 |
+
self.bpe_dict = Dictionary().load(vocab_file)
|
41 |
+
|
42 |
+
# Mimic fairseq token-to-id alignment for the first 4 token
|
43 |
+
self.fairseq_tokens_to_ids = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3}
|
44 |
+
|
45 |
+
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
|
46 |
+
self.fairseq_offset = 0
|
47 |
+
|
48 |
+
self.fairseq_tokens_to_ids["<mask>"] = len(self.bpe_dict) + self.fairseq_offset
|
49 |
+
self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
|
50 |
+
|
51 |
+
def _tokenize(self, text):
|
52 |
+
return self.sp_model.EncodeAsPieces(text)
|
53 |
+
|
54 |
+
def _convert_token_to_id(self, token):
|
55 |
+
""" Converts a token (str) in an id using the vocab. """
|
56 |
+
if token in self.fairseq_tokens_to_ids:
|
57 |
+
return self.fairseq_tokens_to_ids[token]
|
58 |
+
spm_id = self.bpe_dict.index(token)
|
59 |
+
return spm_id
|
60 |
+
|
61 |
+
def _convert_id_to_token(self, index):
|
62 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
63 |
+
if index in self.fairseq_ids_to_tokens:
|
64 |
+
return self.fairseq_ids_to_tokens[index]
|
65 |
+
return self.bpe_dict[index]
|
66 |
+
|
67 |
+
def build_inputs_with_special_tokens(
|
68 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
69 |
+
) -> List[int]:
|
70 |
+
"""
|
71 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
72 |
+
adding special tokens.
|
73 |
+
|
74 |
+
This implementation does not add special tokens and this method should be overridden in a subclass.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
token_ids_0 (:obj:`List[int]`): The first tokenized sequence.
|
78 |
+
token_ids_1 (:obj:`List[int]`, `optional`): The second tokenized sequence.
|
79 |
+
|
80 |
+
Returns:
|
81 |
+
:obj:`List[int]`: The model input with special tokens.
|
82 |
+
"""
|
83 |
+
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
84 |
+
|
85 |
+
def create_token_type_ids_from_sequences(
|
86 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
87 |
+
) -> List[int]:
|
88 |
+
"""
|
89 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. XLM-RoBERTa does
|
90 |
+
not make use of token type ids, therefore a list of zeros is returned.
|
91 |
+
|
92 |
+
Args:
|
93 |
+
token_ids_0 (:obj:`List[int]`):
|
94 |
+
List of IDs.
|
95 |
+
token_ids_1 (:obj:`List[int]`, `optional`):
|
96 |
+
Optional second list of IDs for sequence pairs.
|
97 |
+
|
98 |
+
Returns:
|
99 |
+
:obj:`List[int]`: List of zeros.
|
100 |
+
|
101 |
+
"""
|
102 |
+
|
103 |
+
sep = [self.sep_token_id]
|
104 |
+
cls = [self.cls_token_id]
|
105 |
+
|
106 |
+
return len(cls + token_ids_0 + sep) * [0]
|
107 |
+
|
108 |
+
@property
|
109 |
+
def vocab_size(self):
|
110 |
+
return len(self.bpe_dict) + self.fairseq_offset + 1 # Add the <mask> token
|
111 |
+
|
112 |
+
def get_vocab(self):
|
113 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
114 |
+
vocab.update(self.added_tokens_encoder)
|
115 |
+
return vocab
|
116 |
+
|
117 |
+
|
118 |
+
class Dictionary(object):
|
119 |
+
"""A mapping from symbols to consecutive integers"""
|
120 |
+
|
121 |
+
def __init__(
|
122 |
+
self,
|
123 |
+
pad='<pad>',
|
124 |
+
eos='</s>',
|
125 |
+
unk='<unk>',
|
126 |
+
bos='<s>',
|
127 |
+
extra_special_symbols=None,
|
128 |
+
):
|
129 |
+
self.unk_word, self.pad_word, self.eos_word = unk, pad, eos
|
130 |
+
self.symbols = []
|
131 |
+
self.count = []
|
132 |
+
self.indices = {}
|
133 |
+
self.bos_index = self.add_symbol(bos)
|
134 |
+
self.pad_index = self.add_symbol(pad)
|
135 |
+
self.eos_index = self.add_symbol(eos)
|
136 |
+
self.unk_index = self.add_symbol(unk)
|
137 |
+
if extra_special_symbols:
|
138 |
+
for s in extra_special_symbols:
|
139 |
+
self.add_symbol(s)
|
140 |
+
self.nspecial = len(self.symbols)
|
141 |
+
|
142 |
+
def __eq__(self, other):
|
143 |
+
return self.indices == other.indices
|
144 |
+
|
145 |
+
def __getitem__(self, idx):
|
146 |
+
if idx < len(self.symbols):
|
147 |
+
return self.symbols[idx]
|
148 |
+
return self.unk_word
|
149 |
+
|
150 |
+
def __len__(self):
|
151 |
+
"""Returns the number of symbols in the dictionary"""
|
152 |
+
return len(self.symbols)
|
153 |
+
|
154 |
+
def __contains__(self, sym):
|
155 |
+
return sym in self.indices
|
156 |
+
|
157 |
+
def index(self, sym):
|
158 |
+
"""Returns the index of the specified symbol"""
|
159 |
+
assert isinstance(sym, str)
|
160 |
+
if sym in self.indices:
|
161 |
+
return self.indices[sym]
|
162 |
+
return self.unk_index
|
163 |
+
|
164 |
+
def unk_string(self, escape=False):
|
165 |
+
"""Return unknown string, optionally escaped as: <<unk>>"""
|
166 |
+
if escape:
|
167 |
+
return '<{}>'.format(self.unk_word)
|
168 |
+
else:
|
169 |
+
return self.unk_word
|
170 |
+
|
171 |
+
def add_symbol(self, word, n=1):
|
172 |
+
"""Adds a word to the dictionary"""
|
173 |
+
if word in self.indices:
|
174 |
+
idx = self.indices[word]
|
175 |
+
self.count[idx] = self.count[idx] + n
|
176 |
+
return idx
|
177 |
+
else:
|
178 |
+
idx = len(self.symbols)
|
179 |
+
self.indices[word] = idx
|
180 |
+
self.symbols.append(word)
|
181 |
+
self.count.append(n)
|
182 |
+
return idx
|
183 |
+
|
184 |
+
def update(self, new_dict):
|
185 |
+
"""Updates counts from new dictionary."""
|
186 |
+
for word in new_dict.symbols:
|
187 |
+
idx2 = new_dict.indices[word]
|
188 |
+
if word in self.indices:
|
189 |
+
idx = self.indices[word]
|
190 |
+
self.count[idx] = self.count[idx] + new_dict.count[idx2]
|
191 |
+
else:
|
192 |
+
idx = len(self.symbols)
|
193 |
+
self.indices[word] = idx
|
194 |
+
self.symbols.append(word)
|
195 |
+
self.count.append(new_dict.count[idx2])
|
196 |
+
|
197 |
+
def finalize(self, threshold=-1, nwords=-1, padding_factor=8):
|
198 |
+
"""Sort symbols by frequency in descending order, ignoring special ones.
|
199 |
+
|
200 |
+
Args:
|
201 |
+
- threshold defines the minimum word count
|
202 |
+
- nwords defines the total number of words in the final dictionary,
|
203 |
+
including special symbols
|
204 |
+
- padding_factor can be used to pad the dictionary size to be a
|
205 |
+
multiple of 8, which is important on some hardware (e.g., Nvidia
|
206 |
+
Tensor Cores).
|
207 |
+
"""
|
208 |
+
if nwords <= 0:
|
209 |
+
nwords = len(self)
|
210 |
+
|
211 |
+
new_indices = dict(zip(self.symbols[:self.nspecial], range(self.nspecial)))
|
212 |
+
new_symbols = self.symbols[:self.nspecial]
|
213 |
+
new_count = self.count[:self.nspecial]
|
214 |
+
|
215 |
+
c = Counter(dict(sorted(zip(self.symbols[self.nspecial:], self.count[self.nspecial:]))))
|
216 |
+
for symbol, count in c.most_common(nwords - self.nspecial):
|
217 |
+
if count >= threshold:
|
218 |
+
new_indices[symbol] = len(new_symbols)
|
219 |
+
new_symbols.append(symbol)
|
220 |
+
new_count.append(count)
|
221 |
+
else:
|
222 |
+
break
|
223 |
+
|
224 |
+
threshold_nwords = len(new_symbols)
|
225 |
+
if padding_factor > 1:
|
226 |
+
i = 0
|
227 |
+
while threshold_nwords % padding_factor != 0:
|
228 |
+
symbol = 'madeupword{:04d}'.format(i)
|
229 |
+
new_indices[symbol] = len(new_symbols)
|
230 |
+
new_symbols.append(symbol)
|
231 |
+
new_count.append(0)
|
232 |
+
i += 1
|
233 |
+
threshold_nwords += 1
|
234 |
+
|
235 |
+
assert len(new_symbols) % padding_factor == 0
|
236 |
+
assert len(new_symbols) == len(new_indices)
|
237 |
+
|
238 |
+
self.count = list(new_count)
|
239 |
+
self.symbols = list(new_symbols)
|
240 |
+
self.indices = new_indices
|
241 |
+
|
242 |
+
def bos(self):
|
243 |
+
"""Helper to get index of beginning-of-sentence symbol"""
|
244 |
+
return self.bos_index
|
245 |
+
|
246 |
+
def pad(self):
|
247 |
+
"""Helper to get index of pad symbol"""
|
248 |
+
return self.pad_index
|
249 |
+
|
250 |
+
def eos(self):
|
251 |
+
"""Helper to get index of end-of-sentence symbol"""
|
252 |
+
return self.eos_index
|
253 |
+
|
254 |
+
def unk(self):
|
255 |
+
"""Helper to get index of unk symbol"""
|
256 |
+
return self.unk_index
|
257 |
+
|
258 |
+
@classmethod
|
259 |
+
def load(cls, f):
|
260 |
+
"""Loads the dictionary from a text file with the format:
|
261 |
+
|
262 |
+
```
|
263 |
+
<symbol0> <count0>
|
264 |
+
<symbol1> <count1>
|
265 |
+
...
|
266 |
+
```
|
267 |
+
"""
|
268 |
+
d = cls()
|
269 |
+
d.add_from_file(f)
|
270 |
+
return d
|
271 |
+
|
272 |
+
def add_from_file(self, f):
|
273 |
+
"""
|
274 |
+
Loads a pre-existing dictionary from a text file and adds its symbols
|
275 |
+
to this instance.
|
276 |
+
"""
|
277 |
+
if isinstance(f, str):
|
278 |
+
try:
|
279 |
+
with open(f, 'r', encoding='utf-8') as fd:
|
280 |
+
self.add_from_file(fd)
|
281 |
+
except FileNotFoundError as fnfe:
|
282 |
+
raise fnfe
|
283 |
+
except UnicodeError:
|
284 |
+
raise Exception("Incorrect encoding detected in {}, please "
|
285 |
+
"rebuild the dataset".format(f))
|
286 |
+
return
|
287 |
+
|
288 |
+
lines = f.readlines()
|
289 |
+
indices_start_line = self._load_meta(lines)
|
290 |
+
for line in lines[indices_start_line:]:
|
291 |
+
idx = line.rfind(' ')
|
292 |
+
if idx == -1:
|
293 |
+
raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'")
|
294 |
+
word = line[:idx]
|
295 |
+
count = int(line[idx + 1:])
|
296 |
+
self.indices[word] = len(self.symbols)
|
297 |
+
self.symbols.append(word)
|
298 |
+
self.count.append(count)
|
299 |
+
|
300 |
+
def _save(self, f, kv_iterator):
|
301 |
+
if isinstance(f, str):
|
302 |
+
os.makedirs(os.path.dirname(f), exist_ok=True)
|
303 |
+
with open(f, 'w', encoding='utf-8') as fd:
|
304 |
+
return self.save(fd)
|
305 |
+
for k, v in kv_iterator:
|
306 |
+
print('{} {}'.format(k, v), file=f)
|
307 |
+
|
308 |
+
def _get_meta(self):
|
309 |
+
return [], []
|
310 |
+
|
311 |
+
def _load_meta(self, lines):
|
312 |
+
return 0
|
313 |
+
|
314 |
+
def save(self, f):
|
315 |
+
"""Stores dictionary into a text file"""
|
316 |
+
ex_keys, ex_vals = self._get_meta()
|
317 |
+
self._save(f, zip(ex_keys + self.symbols[self.nspecial:], ex_vals + self.count[self.nspecial:]))
|