nfaheem commited on
Commit
2bde427
1 Parent(s): 9cb04a6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +43 -3
README.md CHANGED
@@ -8,9 +8,9 @@ tags:
8
  - udkai/Turdus
9
  ---
10
 
11
- # ('Marcoroni-7b-DPO-Merge',)
12
 
13
- ('Marcoroni-7b-DPO-Merge',) is a merge of the following models using [mergekit](https://github.com/cg123/mergekit):
14
  * [fblgit/UNA-TheBeagle-7b-v1](https://huggingface.co/fblgit/UNA-TheBeagle-7b-v1)
15
  * [udkai/Turdus](https://huggingface.co/udkai/Turdus)
16
 
@@ -33,4 +33,44 @@ base_model: madatnlp/marcoroni-7b-v3-safetensor
33
  parameters:
34
  normalize: true
35
  dtype: float16
36
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  - udkai/Turdus
9
  ---
10
 
11
+ # Marcoroni-7b-DPO-Merge
12
 
13
+ Marcoroni-7b-DPO-Merge is a merge of the following models using [mergekit](https://github.com/cg123/mergekit) and inspired by [Maxime Labonne's work](https://medium.com/@mlabonne):
14
  * [fblgit/UNA-TheBeagle-7b-v1](https://huggingface.co/fblgit/UNA-TheBeagle-7b-v1)
15
  * [udkai/Turdus](https://huggingface.co/udkai/Turdus)
16
 
 
33
  parameters:
34
  normalize: true
35
  dtype: float16
36
+ ```
37
+
38
+ ## 💻 Example Python Code
39
+
40
+ ```python
41
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
42
+
43
+ model_name_or_path = "nfaheem/Marcoroni-7b-DPO-Merge"
44
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
45
+ device_map="auto",
46
+ revision="main")
47
+
48
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
49
+
50
+ prompt = "Write a story about llamas"
51
+ system_message = "You are a story writing assistant"
52
+ prompt_template=f'''{prompt}
53
+ '''
54
+
55
+ print("\n\n*** Generate:")
56
+
57
+ input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
58
+ output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
59
+ print(tokenizer.decode(output[0]))
60
+
61
+ # Inference can also be done using transformers' pipeline
62
+
63
+ print("*** Pipeline:")
64
+ pipe = pipeline(
65
+ "text-generation",
66
+ model=model,
67
+ tokenizer=tokenizer,
68
+ max_new_tokens=512,
69
+ do_sample=True,
70
+ temperature=0.7,
71
+ top_p=0.95,
72
+ top_k=40,
73
+ repetition_penalty=1.1
74
+ )
75
+
76
+ print(pipe(prompt_template)[0]['generated_text'])