File size: 3,155 Bytes
17169a4
 
 
 
 
b943ffc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9036f6c
b943ffc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efdb120
b943ffc
 
efdb120
b943ffc
 
efdb120
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b943ffc
efdb120
 
 
 
b943ffc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17169a4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
license: mit
language:
- en
---

# Named entity recognition

## Model Description

This model is a fine-tuned token classification model designed to predict entities in sentences. 
It's fine-tuned on a custom dataset that focuses on identifying certain types of entities, including biases in text.

## Intended Use

The model is intended to be used for entity recognition tasks, especially for identifying biases in text passages.
Users can input a sequence of text, and the model will highlight words or tokens or **spans** it believes are associated with a particular entity or bias.

## How to Use

The model can be used for inference directly through the Hugging Face `transformers` library:

```python

from transformers import AutoModelForTokenClassification, AutoTokenizer
import torch

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Load model directly
from transformers import AutoTokenizer, AutoModelForTokenClassification

tokenizer = AutoTokenizer.from_pretrained("newsmediabias/UnBIAS-Named-Entity-Recognition")
model = AutoModelForTokenClassification.from_pretrained("newsmediabias/UnBIAS-Named-Entity-Recognition")

def predict_entities(sentence):
    tokens = tokenizer.tokenize(tokenizer.decode(tokenizer.encode(sentence)))
    inputs = tokenizer.encode(sentence, return_tensors="pt")
    inputs = inputs.to(device)

    outputs = model(inputs).logits
    predictions = torch.argmax(outputs, dim=2)

    id2label = model.config.id2label

    # Reconstruct words from subword tokens
    biased_words = []
    current_word = ""
    for token, prediction in zip(tokens, predictions[0]):
        label = id2label[prediction.item()]
        if label in ['B-BIAS', 'I-BIAS']:
            if token.startswith('##'):
                current_word += token[2:]
            else:
                if current_word:
                    biased_words.append(current_word)
                current_word = token
    if current_word:
        biased_words.append(current_word)

    # Filter out special tokens and subword tokens
    biased_words = [word for word in biased_words if not word.startswith('[') and not word.endswith(']') and not word.startswith('##')]

    return biased_words

sentence = "due to your evil and dishonest nature, i am kind of tired and want to get rid of such cheapters."
predictions = predict_entities(sentence)
biased_words = predict_entities(sentence)
for word in biased_words:
    print(f"Biased Word: {word}")


```


## Limitations and Biases

Every model has limitations, and it's crucial to understand these when deploying models in real-world scenarios:

1. **Training Data**: The model is trained on a specific dataset, and its predictions are only as good as the data it's trained on.
2. **Generalization**: While the model may perform well on certain types of sentences or phrases, it might not generalize well to all types of text or contexts.

It's also essential to be aware of any potential biases in the training data, which might affect the model's predictions.

## Training Data

The model was fine-tuned on a custom dataset. Ask **Shaina Raza [email protected]** for dataset