Delete infer-web.py
Browse files- infer-web.py +0 -193
infer-web.py
DELETED
@@ -1,193 +0,0 @@
|
|
1 |
-
import torch, pdb, os,traceback,sys,warnings,shutil
|
2 |
-
now_dir=os.getcwd()
|
3 |
-
sys.path.append(now_dir)
|
4 |
-
tmp=os.path.join(now_dir,"TEMP")
|
5 |
-
shutil.rmtree(tmp,ignore_errors=True)
|
6 |
-
os.makedirs(tmp,exist_ok=True)
|
7 |
-
os.environ["TEMP"]=tmp
|
8 |
-
warnings.filterwarnings("ignore")
|
9 |
-
torch.manual_seed(114514)
|
10 |
-
from infer_pack.models import SynthesizerTrnMs256NSF as SynthesizerTrn256
|
11 |
-
from scipy.io import wavfile
|
12 |
-
from fairseq import checkpoint_utils
|
13 |
-
import gradio as gr
|
14 |
-
import librosa
|
15 |
-
import logging
|
16 |
-
from vc_infer_pipeline import VC
|
17 |
-
import soundfile as sf
|
18 |
-
from config import is_half,device,is_half
|
19 |
-
from infer_uvr5 import _audio_pre_
|
20 |
-
logging.getLogger('numba').setLevel(logging.WARNING)
|
21 |
-
|
22 |
-
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(["hubert_base.pt"],suffix="",)
|
23 |
-
hubert_model = models[0]
|
24 |
-
hubert_model = hubert_model.to(device)
|
25 |
-
if(is_half):hubert_model = hubert_model.half()
|
26 |
-
else:hubert_model = hubert_model.float()
|
27 |
-
hubert_model.eval()
|
28 |
-
|
29 |
-
|
30 |
-
weight_root="weights"
|
31 |
-
weight_uvr5_root="uvr5_weights"
|
32 |
-
names=[]
|
33 |
-
for name in os.listdir(weight_root):names.append(name.replace(".pt",""))
|
34 |
-
uvr5_names=[]
|
35 |
-
for name in os.listdir(weight_uvr5_root):uvr5_names.append(name.replace(".pth",""))
|
36 |
-
|
37 |
-
def get_vc(sid):
|
38 |
-
person = "%s/%s.pt" % (weight_root, sid)
|
39 |
-
cpt = torch.load(person, map_location="cpu")
|
40 |
-
dv = cpt["dv"]
|
41 |
-
tgt_sr = cpt["config"][-1]
|
42 |
-
net_g = SynthesizerTrn256(*cpt["config"], is_half=is_half)
|
43 |
-
net_g.load_state_dict(cpt["weight"], strict=True)
|
44 |
-
net_g.eval().to(device)
|
45 |
-
if (is_half):net_g = net_g.half()
|
46 |
-
else:net_g = net_g.float()
|
47 |
-
vc = VC(tgt_sr, device, is_half)
|
48 |
-
return dv,tgt_sr,net_g,vc
|
49 |
-
|
50 |
-
def vc_single(sid,input_audio,f0_up_key,f0_file):
|
51 |
-
if input_audio is None:return "You need to upload an audio", None
|
52 |
-
f0_up_key = int(f0_up_key)
|
53 |
-
try:
|
54 |
-
if(type(input_audio)==str):
|
55 |
-
print("processing %s" % input_audio)
|
56 |
-
audio, sampling_rate = sf.read(input_audio)
|
57 |
-
else:
|
58 |
-
sampling_rate, audio = input_audio
|
59 |
-
audio = audio.astype("float32") / 32768
|
60 |
-
if(type(sid)==str):dv, tgt_sr, net_g, vc=get_vc(sid)
|
61 |
-
else:dv,tgt_sr,net_g,vc=sid
|
62 |
-
if len(audio.shape) > 1:
|
63 |
-
audio = librosa.to_mono(audio.transpose(1, 0))
|
64 |
-
if sampling_rate != 16000:
|
65 |
-
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
|
66 |
-
times = [0, 0, 0]
|
67 |
-
audio_opt=vc.pipeline(hubert_model,net_g,dv,audio,times,f0_up_key,f0_file=f0_file)
|
68 |
-
print(times)
|
69 |
-
return "Success", (tgt_sr, audio_opt)
|
70 |
-
except:
|
71 |
-
info=traceback.format_exc()
|
72 |
-
print(info)
|
73 |
-
return info,(None,None)
|
74 |
-
finally:
|
75 |
-
print("clean_empty_cache")
|
76 |
-
del net_g,dv,vc
|
77 |
-
torch.cuda.empty_cache()
|
78 |
-
|
79 |
-
def vc_multi(sid,dir_path,opt_root,paths,f0_up_key):
|
80 |
-
try:
|
81 |
-
dir_path=dir_path.strip(" ")#防止小白拷路径头尾带了空格
|
82 |
-
opt_root=opt_root.strip(" ")
|
83 |
-
os.makedirs(opt_root, exist_ok=True)
|
84 |
-
dv, tgt_sr, net_g, vc = get_vc(sid)
|
85 |
-
try:
|
86 |
-
if(dir_path!=""):paths=[os.path.join(dir_path,name)for name in os.listdir(dir_path)]
|
87 |
-
else:paths=[path.name for path in paths]
|
88 |
-
except:
|
89 |
-
traceback.print_exc()
|
90 |
-
paths = [path.name for path in paths]
|
91 |
-
infos=[]
|
92 |
-
for path in paths:
|
93 |
-
info,opt=vc_single([dv,tgt_sr,net_g,vc],path,f0_up_key,f0_file=None)
|
94 |
-
if(info=="Success"):
|
95 |
-
try:
|
96 |
-
tgt_sr,audio_opt=opt
|
97 |
-
wavfile.write("%s/%s" % (opt_root, os.path.basename(path)), tgt_sr, audio_opt)
|
98 |
-
except:
|
99 |
-
info=traceback.format_exc()
|
100 |
-
infos.append("%s->%s"%(os.path.basename(path),info))
|
101 |
-
return "\n".join(infos)
|
102 |
-
except:
|
103 |
-
return traceback.format_exc()
|
104 |
-
finally:
|
105 |
-
print("clean_empty_cache")
|
106 |
-
del net_g,dv,vc
|
107 |
-
torch.cuda.empty_cache()
|
108 |
-
|
109 |
-
def uvr(model_name,inp_root,save_root_vocal,save_root_ins):
|
110 |
-
infos = []
|
111 |
-
try:
|
112 |
-
inp_root = inp_root.strip(" ")# 防止小白拷路径头尾带了空格
|
113 |
-
save_root_vocal = save_root_vocal.strip(" ")
|
114 |
-
save_root_ins = save_root_ins.strip(" ")
|
115 |
-
pre_fun = _audio_pre_(model_path=os.path.join(weight_uvr5_root,model_name+".pth"), device=device, is_half=is_half)
|
116 |
-
for name in os.listdir(inp_root):
|
117 |
-
inp_path=os.path.join(inp_root,name)
|
118 |
-
try:
|
119 |
-
pre_fun._path_audio_(inp_path , save_root_ins,save_root_vocal)
|
120 |
-
infos.append("%s->Success"%(os.path.basename(inp_path)))
|
121 |
-
except:
|
122 |
-
infos.append("%s->%s" % (os.path.basename(inp_path),traceback.format_exc()))
|
123 |
-
except:
|
124 |
-
infos.append(traceback.format_exc())
|
125 |
-
finally:
|
126 |
-
try:
|
127 |
-
del pre_fun.model
|
128 |
-
del pre_fun
|
129 |
-
except:
|
130 |
-
traceback.print_exc()
|
131 |
-
print("clean_empty_cache")
|
132 |
-
torch.cuda.empty_cache()
|
133 |
-
return "\n".join(infos)
|
134 |
-
|
135 |
-
with gr.Blocks() as app:
|
136 |
-
with gr.Tabs():
|
137 |
-
with gr.TabItem("推理"):
|
138 |
-
with gr.Group():
|
139 |
-
gr.Markdown(value="""
|
140 |
-
使用软件者、传播软件导出的声音者自负全责。如不认可该条款,则不能使用/引用软件包内所有代码和文件。<br>
|
141 |
-
目前仅开放白菜音色,后续将扩展为本地训练推理工具,用户可训练自己的音色进行社区共享。<br>
|
142 |
-
男转女推荐+12key,女转男推荐-12key,如果音域爆炸导致音色失真也可以自己调整到合适音域
|
143 |
-
""")
|
144 |
-
with gr.Row():
|
145 |
-
with gr.Column():
|
146 |
-
sid0 = gr.Dropdown(label="音色", choices=names)
|
147 |
-
vc_transform0 = gr.Number(label="变调(整数,半音数量,升八度12降八度-12)", value=12)
|
148 |
-
f0_file = gr.File(label="F0曲线文件,可选,一行一个音高,代替默认F0及升降调")
|
149 |
-
input_audio0 = gr.Audio(label="上传音频")
|
150 |
-
but0=gr.Button("转换", variant="primary")
|
151 |
-
with gr.Column():
|
152 |
-
vc_output1 = gr.Textbox(label="输出信息")
|
153 |
-
vc_output2 = gr.Audio(label="输出音频")
|
154 |
-
but0.click(vc_single, [sid0, input_audio0, vc_transform0,f0_file], [vc_output1, vc_output2])
|
155 |
-
with gr.Group():
|
156 |
-
gr.Markdown(value="""
|
157 |
-
批量转换,上传多个音频文件,在指定文件夹(默认opt)下输出转换的音频。<br>
|
158 |
-
合格的文件夹路径格式举例:E:\codes\py39\\vits_vc_gpu\白鹭霜华测试样例(去文件管理器地址栏拷就行了)
|
159 |
-
""")
|
160 |
-
with gr.Row():
|
161 |
-
with gr.Column():
|
162 |
-
sid1 = gr.Dropdown(label="音色", choices=names)
|
163 |
-
vc_transform1 = gr.Number(label="变调(整数,半音数量,升八度12降八度-12)", value=12)
|
164 |
-
opt_input = gr.Textbox(label="指定输出文件夹",value="opt")
|
165 |
-
with gr.Column():
|
166 |
-
dir_input = gr.Textbox(label="输入待处理音频文件夹路径")
|
167 |
-
inputs = gr.File(file_count="multiple", label="也可批量输入音频文件,二选一,优先读文件夹")
|
168 |
-
but1=gr.Button("转换", variant="primary")
|
169 |
-
vc_output3 = gr.Textbox(label="输出信息")
|
170 |
-
but1.click(vc_multi, [sid1, dir_input,opt_input,inputs, vc_transform1], [vc_output3])
|
171 |
-
|
172 |
-
with gr.TabItem("数据处理"):
|
173 |
-
with gr.Group():
|
174 |
-
gr.Markdown(value="""
|
175 |
-
人声伴奏分离批量处理,使用UVR5模型。<br>
|
176 |
-
不带和声用HP2,带和声且提取的人声不需要和声用HP5<br>
|
177 |
-
合格的文件夹路径格式举例:E:\codes\py39\\vits_vc_gpu\白鹭霜华测试样例(去文件管理器地址栏拷就行了)
|
178 |
-
""")
|
179 |
-
with gr.Row():
|
180 |
-
with gr.Column():
|
181 |
-
dir_wav_input = gr.Textbox(label="输入待处理音频文件夹路径")
|
182 |
-
wav_inputs = gr.File(file_count="multiple", label="也可批量输入音频文件,二选一,优先读文件夹")
|
183 |
-
with gr.Column():
|
184 |
-
model_choose = gr.Dropdown(label="模型", choices=uvr5_names)
|
185 |
-
opt_vocal_root = gr.Textbox(label="指定输出人声文件夹",value="opt")
|
186 |
-
opt_ins_root = gr.Textbox(label="指定输出乐器文件夹",value="opt")
|
187 |
-
but2=gr.Button("转换", variant="primary")
|
188 |
-
vc_output4 = gr.Textbox(label="输出信息")
|
189 |
-
but2.click(uvr, [model_choose, dir_wav_input,opt_vocal_root,opt_ins_root], [vc_output4])
|
190 |
-
with gr.TabItem("训练-待开放"):pass
|
191 |
-
|
192 |
-
# app.launch(server_name="0.0.0.0",server_port=7860)
|
193 |
-
app.launch(server_name="127.0.0.1",server_port=7860)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|