alexmarques commited on
Commit
11b99b2
·
verified ·
1 Parent(s): 7870641

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +212 -0
README.md ADDED
@@ -0,0 +1,212 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: text-generation
3
+ datasets:
4
+ - bigcode/the-stack-v2-train
5
+ license: bigcode-openrail-m
6
+ library_name: transformers
7
+ tags:
8
+ - code
9
+ model-index:
10
+ - name: starcoder2-15b-quantized.w8a8
11
+ results:
12
+ - task:
13
+ type: text-generation
14
+ dataset:
15
+ name: HumanEval+
16
+ type: humanevalplus
17
+ metrics:
18
+ - type: pass@1
19
+ value: 26.8
20
+ - task:
21
+ type: text-generation
22
+ dataset:
23
+ name: HumanEval
24
+ type: humaneval
25
+ metrics:
26
+ - type: pass@1
27
+ value: 31.4
28
+ ---
29
+
30
+ # starcoder2-3b-quantized.w8a8
31
+
32
+ ## Model Overview
33
+ - **Model Architecture:** StarCoder2
34
+ - **Input:** Text
35
+ - **Output:** Text
36
+ - **Model Optimizations:**
37
+ - **Activation quantization:** INT8
38
+ - **Weight quantization:** INT8
39
+ - **Intended Use Cases:** Intended for commercial and research use. Similarly to [starcoder2-15b](https://huggingface.co/bigcode/starcoder2-15b), this model is intended for code generation and is _not_ an instruction model. Commands like "Write a function that computes the square root." do not work well.
40
+ - **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws).
41
+ - **Release Date:** 8/1/2024
42
+ - **Version:** 1.0
43
+ - **License(s):** bigcode-openrail-m
44
+ - **Model Developers:** Neural Magic
45
+
46
+ Quantized version of [starcoder2-15b](https://huggingface.co/bigcode/starcoder2-15b).
47
+ It achieves a HumanEval pass@1 of 44.6, whereas the unquantized model achieves 44.8 when evaluated under the same conditions.
48
+
49
+ ### Model Optimizations
50
+
51
+ This model was obtained by quantizing the weights of [starcoder2-15b](https://huggingface.co/bigcode/starcoder2-15b) to INT8 data type.
52
+ This optimization reduces the number of bits used to represent weights and activations from 16 to 8, reducing GPU memory requirements (by approximately 50%) and increasing matrix-multiply compute throughput (by approximately 2x).
53
+ Weight quantization also reduces disk size requirements by approximately 50%.
54
+
55
+ Only weights and activations of the linear operators within transformers blocks are quantized.
56
+ Weights are quantized with a symmetric static per-channel scheme, where a fixed linear scaling factor is applied between INT8 and floating point representations for each output channel dimension.
57
+ Activations are quantized with a symmetric dynamic per-token scheme, computing a linear scaling factor at runtime for each token between INT8 and floating point representations.
58
+ The [GPTQ](https://arxiv.org/abs/2210.17323) algorithm is applied for quantization, as implemented in the [llm-compressor](https://github.com/vllm-project/llm-compressor) library.
59
+ GPTQ used a 1% damping factor and 256 sequences of 8,192 random tokens.
60
+
61
+
62
+ ## Deployment
63
+
64
+ ### Use with vLLM
65
+
66
+ This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
67
+
68
+ ```python
69
+ from vllm import LLM, SamplingParams
70
+ from transformers import AutoTokenizer
71
+
72
+ model_id = "neuralmagic/starcoder2-15b-quantized.w8a8"
73
+ number_gpus = 1
74
+
75
+ sampling_params = SamplingParams(temperature=0.2, top_p=0.95, max_tokens=256)
76
+
77
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
78
+
79
+ prompts = ["def print_hello_world():"]
80
+
81
+ llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
82
+
83
+ outputs = llm.generate(prompts, sampling_params)
84
+
85
+ generated_text = outputs[0].outputs[0].text
86
+ print(generated_text)
87
+ ```
88
+
89
+ vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
90
+
91
+
92
+ ## Creation
93
+
94
+ This model was created by using the [llm-compressor](https://github.com/vllm-project/llm-compressor) library as presented in the code snipet below.
95
+
96
+ ```python
97
+ from transformers import AutoTokenizer
98
+ from datasets import Dataset
99
+ from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot
100
+ from llmcompressor.modifiers.quantization import GPTQModifier
101
+ import random
102
+
103
+ model_id = "bigcode/starcoder2-15b"
104
+
105
+ num_samples = 256
106
+ max_seq_len = 8192
107
+
108
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
109
+
110
+ max_token_id = len(tokenizer.get_vocab()) - 1
111
+ input_ids = [[random.randint(0, max_token_id) for _ in range(max_seq_len)] for _ in range(num_samples)]
112
+ attention_mask = num_samples * [max_seq_len * [1]]
113
+ ds = Dataset.from_dict({"input_ids": input_ids, "attention_mask": attention_mask})
114
+
115
+ recipe = GPTQModifier(
116
+ targets="Linear",
117
+ scheme="W8A8",
118
+ ignore=["lm_head"],
119
+ dampening_frac=0.01,
120
+ )
121
+
122
+ model = SparseAutoModelForCausalLM.from_pretrained(
123
+ model_id,
124
+ device_map="auto",
125
+ trust_remote_code=True,
126
+ )
127
+
128
+ oneshot(
129
+ model=model,
130
+ dataset=ds,
131
+ recipe=recipe,
132
+ max_seq_length=max_seq_len,
133
+ num_calibration_samples=num_samples,
134
+ )
135
+ model.save_pretrained("starcoder2-15b-quantized.w8a8")
136
+ ```
137
+
138
+
139
+ ## Evaluation
140
+
141
+ The model was evaluated on the [HumanEval](https://arxiv.org/abs/2107.03374) and [HumanEval+](https://arxiv.org/abs/2305.01210) benchmarks, using the generation configuration from [Big Code Models Leaderboard](https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard).
142
+ We used Neural Magic's fork of [evalplus](https://github.com/neuralmagic/evalplus) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following commands:
143
+
144
+ ```
145
+ python codegen/generate.py \
146
+ --model neuralmagic/starcoder2-15b-quantized.w8a8 \
147
+ --bs 16 \
148
+ --temperature 0.2 \
149
+ --n_samples 50 \
150
+ --dataset humaneval \
151
+ -- root "."
152
+
153
+ python3 evalplus/sanitize.py humaneval/neuralmagic--starcoder2-15b-quantized.w8a8_vllm_temp_0.2
154
+
155
+ evalplus.evaluate --dataset humaneval --samples humaneval/neuralmagic--starcoder2-15b-quantized.w8a8_vllm_temp_0.2-sanitized
156
+ ```
157
+
158
+ ### Accuracy
159
+
160
+ <table>
161
+ <tr>
162
+ <td><strong>Benchmark</strong>
163
+ </td>
164
+ <td><strong>starcoder2-15b</strong>
165
+ </td>
166
+ <td><strong>starcoder2-15b-quantized.w8a8 (this model)</strong>
167
+ </td>
168
+ <td><strong>Recovery</strong>
169
+ </td>
170
+ </tr>
171
+ <tr>
172
+ <td>HumanEval pass@1
173
+ </td>
174
+ <td>44.8
175
+ </td>
176
+ <td>44.6
177
+ </td>
178
+ <td>99.6%
179
+ </td>
180
+ </tr>
181
+ <tr>
182
+ <td>HumanEval pass@10
183
+ </td>
184
+ <td>62.7
185
+ </td>
186
+ <td>63.3
187
+ </td>
188
+ <td>101.0%
189
+ </td>
190
+ </tr>
191
+ <tr>
192
+ <td>HumanEval+ pass@1
193
+ </td>
194
+ <td>38.6
195
+ </td>
196
+ <td>38.1
197
+ </td>
198
+ <td>98.7%
199
+ </td>
200
+ </tr>
201
+ <tr>
202
+ <td>HumanEval+ pass@10
203
+ </td>
204
+ <td>54.9
205
+ </td>
206
+ <td>55.5
207
+ </td>
208
+ <td>101.1%
209
+ </td>
210
+ </tr>
211
+ <tr>
212
+ </table>