abhinavnmagic commited on
Commit
87c2134
·
verified ·
1 Parent(s): 8a53043

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +257 -0
README.md ADDED
@@ -0,0 +1,257 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ pipeline_tag: text-generation
5
+ ---
6
+
7
+ # Qwen2-72B-Instruct-quantized.w4a16
8
+
9
+ ## Model Overview
10
+ - **Model Architecture:** Qwen-2
11
+ - **Input:** Text
12
+ - **Output:** Text
13
+ - **Model Optimizations:**
14
+ - **Weight quantization:** INT4
15
+ - **Intended Use Cases:** Intended for commercial and research use in English. Similarly to [Qwen2-72B-Instruct](https://huggingface.co/Qwen/Qwen2-72B-Instruct), this models is intended for assistant-like chat.
16
+ - **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
17
+ - **Release Date:** 7/11/2024
18
+ - **Version:** 1.0
19
+ - **Model Developers:** Neural Magic
20
+
21
+ Quantized version of [Qwen2-72B-Instruct](https://huggingface.co/Qwen/Qwen2-72B-Instruct).
22
+ It achieves an average score of 68.35 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 69.63.
23
+
24
+ ### Model Optimizations
25
+
26
+ This model was obtained by quantizing the weights of [Qwen2-72B-Instruct](https://huggingface.co/Qwen/Qwen2-72B-Instruct) to INT4 data type.
27
+ This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 25%.
28
+
29
+ Only the weights of the linear operators within transformers blocks are quantized. Symmetric group-wise quantization is applied, in which a linear scaling per group maps the INT4 and floating point representations of the quantized weights.
30
+ [AutoGPTQ](https://github.com/AutoGPTQ/AutoGPTQ) is used for quantization with 10% damping factor, group-size as 128 and 512 sequences sampled from [Open-Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus).
31
+
32
+
33
+ ## Deployment
34
+
35
+ ### Use with vLLM
36
+
37
+ This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
38
+
39
+ ```python
40
+ from vllm import LLM, SamplingParams
41
+ from transformers import AutoTokenizer
42
+
43
+ model_id = "neuralmagic/Qwen2-72B-Instruct-quantized.w4a16"
44
+
45
+ sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)
46
+
47
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
48
+
49
+ messages = [
50
+ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
51
+ {"role": "user", "content": "Who are you?"},
52
+ ]
53
+
54
+ prompts = tokenizer.apply_chat_template(messages, tokenize=False)
55
+
56
+ llm = LLM(model=model_id, tensor_parallel_size=1)
57
+
58
+ outputs = llm.generate(prompts, sampling_params)
59
+
60
+ generated_text = outputs[0].outputs[0].text
61
+ print(generated_text)
62
+ ```
63
+
64
+ vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
65
+
66
+ ### Use with transformers
67
+
68
+ This model is supported by Transformers leveraging the integration with the [AutoGPTQ](https://github.com/AutoGPTQ/AutoGPTQ) data format.
69
+ The following example contemplates how the model can be used using the `generate()` function.
70
+
71
+ ```python
72
+ from transformers import AutoTokenizer, AutoModelForCausalLM
73
+
74
+ model_id = "neuralmagic/Qwen2-72B-Instruct-quantized.w4a16"
75
+
76
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
77
+ model = AutoModelForCausalLM.from_pretrained(
78
+ model_id,
79
+ torch_dtype="auto",
80
+ device_map="auto",
81
+ )
82
+
83
+ messages = [
84
+ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
85
+ {"role": "user", "content": "Who are you?"},
86
+ ]
87
+
88
+ input_ids = tokenizer.apply_chat_template(
89
+ messages,
90
+ add_generation_prompt=True,
91
+ return_tensors="pt"
92
+ ).to(model.device)
93
+
94
+ terminators = [
95
+ tokenizer.eos_token_id,
96
+ tokenizer.convert_tokens_to_ids("<|eot_id|>")
97
+ ]
98
+
99
+ outputs = model.generate(
100
+ input_ids,
101
+ max_new_tokens=256,
102
+ eos_token_id=terminators,
103
+ do_sample=True,
104
+ temperature=0.6,
105
+ top_p=0.9,
106
+ )
107
+ response = outputs[0][input_ids.shape[-1]:]
108
+ print(tokenizer.decode(response, skip_special_tokens=True))
109
+ ```
110
+
111
+ ## Creation
112
+
113
+ This model was created by applying the [AutoGPTQ](https://github.com/AutoGPTQ/AutoGPTQ) library as presented in the code snipet below.
114
+ Although AutoGPTQ was used for this particular model, Neural Magic is transitioning to using [llm-compressor](https://github.com/vllm-project/llm-compressor) which supports several quantization schemes and models not supported by AutoGPTQ.
115
+
116
+ ```python
117
+ from transformers import AutoTokenizer
118
+ from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
119
+ from datasets import load_dataset
120
+ import random
121
+
122
+ model_id = "Qwen/Qwen2-72B-Instruct"
123
+
124
+ num_samples = 512
125
+ max_seq_len = 4096
126
+
127
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
128
+
129
+ preprocess_fn = lambda example: {"text": "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n{text}".format_map(example)}
130
+
131
+ dataset_name = "neuralmagic/LLM_compression_calibration"
132
+ dataset = load_dataset(dataset_name, split="train")
133
+ ds = dataset.shuffle().select(range(num_samples))
134
+ ds = ds.map(preprocess_fn)
135
+
136
+ examples = [
137
+ tokenizer(
138
+ example["text"], padding=False, max_length=max_seq_len, truncation=True,
139
+ ) for example in ds
140
+ ]
141
+
142
+ quantize_config = BaseQuantizeConfig(
143
+ bits=4,
144
+ group_size=128,
145
+ desc_act=True,
146
+ model_file_base_name="model",
147
+ damp_percent=0.1,
148
+ )
149
+
150
+ model = AutoGPTQForCausalLM.from_pretrained(
151
+ model_id,
152
+ quantize_config,
153
+ device_map="auto",
154
+ )
155
+
156
+ model.quantize(examples)
157
+ model.save_pretrained("Qwen2-72B-Instruct-quantized.w4a16")
158
+ ```
159
+
160
+
161
+
162
+ ## Evaluation
163
+
164
+ The model was evaluated on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) leaderboard tasks (version 1) with the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/383bbd54bc621086e05aa1b030d8d4d5635b25e6) (commit 383bbd54bc621086e05aa1b030d8d4d5635b25e6) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following command:
165
+ ```
166
+ lm_eval \
167
+ --model vllm \
168
+ --model_args pretrained="neuralmagic/Qwen2-72B-Instruct-quantized.w4a16",dtype=auto,tensor_parallel_size=1,gpu_memory_utilization=0.4,add_bos_token=True,max_model_len=4096 \
169
+ --tasks openllm \
170
+ --batch_size auto
171
+ ```
172
+
173
+ ### Accuracy
174
+
175
+ #### Open LLM Leaderboard evaluation scores
176
+ <table>
177
+ <tr>
178
+ <td><strong>Benchmark</strong>
179
+ </td>
180
+ <td><strong>Qwen2-72B-Instruct </strong>
181
+ </td>
182
+ <td><strong>Qwen2-72B-Instruct-quantized.w4a16(this model)</strong>
183
+ </td>
184
+ <td><strong>Recovery</strong>
185
+ </td>
186
+ </tr>
187
+ <tr>
188
+ <td>MMLU (5-shot)
189
+ </td>
190
+ <td>83.96
191
+ </td>
192
+ <td>83.41
193
+ </td>
194
+ <td>99.35%
195
+ </td>
196
+ </tr>
197
+ <tr>
198
+ <td>ARC Challenge (25-shot)
199
+ </td>
200
+ <td>71.58
201
+ </td>
202
+ <td>71.84
203
+ </td>
204
+ <td>100.36%
205
+ </td>
206
+ </tr>
207
+ <tr>
208
+ <td>GSM-8K (5-shot, strict-match)
209
+ </td>
210
+ <td>88.24
211
+ </td>
212
+ <td>88.93
213
+ </td>
214
+ <td>100.78%
215
+ </td>
216
+ </tr>
217
+ <tr>
218
+ <td>Hellaswag (10-shot)
219
+ </td>
220
+ <td>86.94
221
+ </td>
222
+ <td>86.31
223
+ </td>
224
+ <td>99.28%
225
+ </td>
226
+ </tr>
227
+ <tr>
228
+ <td>Winogrande (5-shot)
229
+ </td>
230
+ <td>82.79
231
+ </td>
232
+ <td>83.50
233
+ </td>
234
+ <td>100.86%
235
+ </td>
236
+ </tr>
237
+ <tr>
238
+ <td>TruthfulQA (0-shot)
239
+ </td>
240
+ <td>66.98
241
+ </td>
242
+ <td>66.21
243
+ </td>
244
+ <td>98.85%
245
+ </td>
246
+ </tr>
247
+ <tr>
248
+ <td><strong>Average</strong>
249
+ </td>
250
+ <td><strong>80.08</strong>
251
+ </td>
252
+ <td><strong>80.03</strong>
253
+ </td>
254
+ <td><strong>99.94%</strong>
255
+ </td>
256
+ </tr>
257
+ </table>