abhinavnmagic
commited on
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
pipeline_tag: text-generation
|
5 |
+
---
|
6 |
+
|
7 |
+
# Qwen2-72B-Instruct-quantized.w4a16
|
8 |
+
|
9 |
+
## Model Overview
|
10 |
+
- **Model Architecture:** Qwen-2
|
11 |
+
- **Input:** Text
|
12 |
+
- **Output:** Text
|
13 |
+
- **Model Optimizations:**
|
14 |
+
- **Weight quantization:** INT4
|
15 |
+
- **Intended Use Cases:** Intended for commercial and research use in English. Similarly to [Qwen2-72B-Instruct](https://huggingface.co/Qwen/Qwen2-72B-Instruct), this models is intended for assistant-like chat.
|
16 |
+
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
|
17 |
+
- **Release Date:** 7/11/2024
|
18 |
+
- **Version:** 1.0
|
19 |
+
- **Model Developers:** Neural Magic
|
20 |
+
|
21 |
+
Quantized version of [Qwen2-72B-Instruct](https://huggingface.co/Qwen/Qwen2-72B-Instruct).
|
22 |
+
It achieves an average score of 68.35 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 69.63.
|
23 |
+
|
24 |
+
### Model Optimizations
|
25 |
+
|
26 |
+
This model was obtained by quantizing the weights of [Qwen2-72B-Instruct](https://huggingface.co/Qwen/Qwen2-72B-Instruct) to INT4 data type.
|
27 |
+
This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 25%.
|
28 |
+
|
29 |
+
Only the weights of the linear operators within transformers blocks are quantized. Symmetric group-wise quantization is applied, in which a linear scaling per group maps the INT4 and floating point representations of the quantized weights.
|
30 |
+
[AutoGPTQ](https://github.com/AutoGPTQ/AutoGPTQ) is used for quantization with 10% damping factor, group-size as 128 and 512 sequences sampled from [Open-Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus).
|
31 |
+
|
32 |
+
|
33 |
+
## Deployment
|
34 |
+
|
35 |
+
### Use with vLLM
|
36 |
+
|
37 |
+
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
|
38 |
+
|
39 |
+
```python
|
40 |
+
from vllm import LLM, SamplingParams
|
41 |
+
from transformers import AutoTokenizer
|
42 |
+
|
43 |
+
model_id = "neuralmagic/Qwen2-72B-Instruct-quantized.w4a16"
|
44 |
+
|
45 |
+
sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)
|
46 |
+
|
47 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
48 |
+
|
49 |
+
messages = [
|
50 |
+
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
|
51 |
+
{"role": "user", "content": "Who are you?"},
|
52 |
+
]
|
53 |
+
|
54 |
+
prompts = tokenizer.apply_chat_template(messages, tokenize=False)
|
55 |
+
|
56 |
+
llm = LLM(model=model_id, tensor_parallel_size=1)
|
57 |
+
|
58 |
+
outputs = llm.generate(prompts, sampling_params)
|
59 |
+
|
60 |
+
generated_text = outputs[0].outputs[0].text
|
61 |
+
print(generated_text)
|
62 |
+
```
|
63 |
+
|
64 |
+
vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
|
65 |
+
|
66 |
+
### Use with transformers
|
67 |
+
|
68 |
+
This model is supported by Transformers leveraging the integration with the [AutoGPTQ](https://github.com/AutoGPTQ/AutoGPTQ) data format.
|
69 |
+
The following example contemplates how the model can be used using the `generate()` function.
|
70 |
+
|
71 |
+
```python
|
72 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
73 |
+
|
74 |
+
model_id = "neuralmagic/Qwen2-72B-Instruct-quantized.w4a16"
|
75 |
+
|
76 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
77 |
+
model = AutoModelForCausalLM.from_pretrained(
|
78 |
+
model_id,
|
79 |
+
torch_dtype="auto",
|
80 |
+
device_map="auto",
|
81 |
+
)
|
82 |
+
|
83 |
+
messages = [
|
84 |
+
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
|
85 |
+
{"role": "user", "content": "Who are you?"},
|
86 |
+
]
|
87 |
+
|
88 |
+
input_ids = tokenizer.apply_chat_template(
|
89 |
+
messages,
|
90 |
+
add_generation_prompt=True,
|
91 |
+
return_tensors="pt"
|
92 |
+
).to(model.device)
|
93 |
+
|
94 |
+
terminators = [
|
95 |
+
tokenizer.eos_token_id,
|
96 |
+
tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
97 |
+
]
|
98 |
+
|
99 |
+
outputs = model.generate(
|
100 |
+
input_ids,
|
101 |
+
max_new_tokens=256,
|
102 |
+
eos_token_id=terminators,
|
103 |
+
do_sample=True,
|
104 |
+
temperature=0.6,
|
105 |
+
top_p=0.9,
|
106 |
+
)
|
107 |
+
response = outputs[0][input_ids.shape[-1]:]
|
108 |
+
print(tokenizer.decode(response, skip_special_tokens=True))
|
109 |
+
```
|
110 |
+
|
111 |
+
## Creation
|
112 |
+
|
113 |
+
This model was created by applying the [AutoGPTQ](https://github.com/AutoGPTQ/AutoGPTQ) library as presented in the code snipet below.
|
114 |
+
Although AutoGPTQ was used for this particular model, Neural Magic is transitioning to using [llm-compressor](https://github.com/vllm-project/llm-compressor) which supports several quantization schemes and models not supported by AutoGPTQ.
|
115 |
+
|
116 |
+
```python
|
117 |
+
from transformers import AutoTokenizer
|
118 |
+
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
|
119 |
+
from datasets import load_dataset
|
120 |
+
import random
|
121 |
+
|
122 |
+
model_id = "Qwen/Qwen2-72B-Instruct"
|
123 |
+
|
124 |
+
num_samples = 512
|
125 |
+
max_seq_len = 4096
|
126 |
+
|
127 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
128 |
+
|
129 |
+
preprocess_fn = lambda example: {"text": "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n{text}".format_map(example)}
|
130 |
+
|
131 |
+
dataset_name = "neuralmagic/LLM_compression_calibration"
|
132 |
+
dataset = load_dataset(dataset_name, split="train")
|
133 |
+
ds = dataset.shuffle().select(range(num_samples))
|
134 |
+
ds = ds.map(preprocess_fn)
|
135 |
+
|
136 |
+
examples = [
|
137 |
+
tokenizer(
|
138 |
+
example["text"], padding=False, max_length=max_seq_len, truncation=True,
|
139 |
+
) for example in ds
|
140 |
+
]
|
141 |
+
|
142 |
+
quantize_config = BaseQuantizeConfig(
|
143 |
+
bits=4,
|
144 |
+
group_size=128,
|
145 |
+
desc_act=True,
|
146 |
+
model_file_base_name="model",
|
147 |
+
damp_percent=0.1,
|
148 |
+
)
|
149 |
+
|
150 |
+
model = AutoGPTQForCausalLM.from_pretrained(
|
151 |
+
model_id,
|
152 |
+
quantize_config,
|
153 |
+
device_map="auto",
|
154 |
+
)
|
155 |
+
|
156 |
+
model.quantize(examples)
|
157 |
+
model.save_pretrained("Qwen2-72B-Instruct-quantized.w4a16")
|
158 |
+
```
|
159 |
+
|
160 |
+
|
161 |
+
|
162 |
+
## Evaluation
|
163 |
+
|
164 |
+
The model was evaluated on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) leaderboard tasks (version 1) with the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/383bbd54bc621086e05aa1b030d8d4d5635b25e6) (commit 383bbd54bc621086e05aa1b030d8d4d5635b25e6) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following command:
|
165 |
+
```
|
166 |
+
lm_eval \
|
167 |
+
--model vllm \
|
168 |
+
--model_args pretrained="neuralmagic/Qwen2-72B-Instruct-quantized.w4a16",dtype=auto,tensor_parallel_size=1,gpu_memory_utilization=0.4,add_bos_token=True,max_model_len=4096 \
|
169 |
+
--tasks openllm \
|
170 |
+
--batch_size auto
|
171 |
+
```
|
172 |
+
|
173 |
+
### Accuracy
|
174 |
+
|
175 |
+
#### Open LLM Leaderboard evaluation scores
|
176 |
+
<table>
|
177 |
+
<tr>
|
178 |
+
<td><strong>Benchmark</strong>
|
179 |
+
</td>
|
180 |
+
<td><strong>Qwen2-72B-Instruct </strong>
|
181 |
+
</td>
|
182 |
+
<td><strong>Qwen2-72B-Instruct-quantized.w4a16(this model)</strong>
|
183 |
+
</td>
|
184 |
+
<td><strong>Recovery</strong>
|
185 |
+
</td>
|
186 |
+
</tr>
|
187 |
+
<tr>
|
188 |
+
<td>MMLU (5-shot)
|
189 |
+
</td>
|
190 |
+
<td>83.96
|
191 |
+
</td>
|
192 |
+
<td>83.41
|
193 |
+
</td>
|
194 |
+
<td>99.35%
|
195 |
+
</td>
|
196 |
+
</tr>
|
197 |
+
<tr>
|
198 |
+
<td>ARC Challenge (25-shot)
|
199 |
+
</td>
|
200 |
+
<td>71.58
|
201 |
+
</td>
|
202 |
+
<td>71.84
|
203 |
+
</td>
|
204 |
+
<td>100.36%
|
205 |
+
</td>
|
206 |
+
</tr>
|
207 |
+
<tr>
|
208 |
+
<td>GSM-8K (5-shot, strict-match)
|
209 |
+
</td>
|
210 |
+
<td>88.24
|
211 |
+
</td>
|
212 |
+
<td>88.93
|
213 |
+
</td>
|
214 |
+
<td>100.78%
|
215 |
+
</td>
|
216 |
+
</tr>
|
217 |
+
<tr>
|
218 |
+
<td>Hellaswag (10-shot)
|
219 |
+
</td>
|
220 |
+
<td>86.94
|
221 |
+
</td>
|
222 |
+
<td>86.31
|
223 |
+
</td>
|
224 |
+
<td>99.28%
|
225 |
+
</td>
|
226 |
+
</tr>
|
227 |
+
<tr>
|
228 |
+
<td>Winogrande (5-shot)
|
229 |
+
</td>
|
230 |
+
<td>82.79
|
231 |
+
</td>
|
232 |
+
<td>83.50
|
233 |
+
</td>
|
234 |
+
<td>100.86%
|
235 |
+
</td>
|
236 |
+
</tr>
|
237 |
+
<tr>
|
238 |
+
<td>TruthfulQA (0-shot)
|
239 |
+
</td>
|
240 |
+
<td>66.98
|
241 |
+
</td>
|
242 |
+
<td>66.21
|
243 |
+
</td>
|
244 |
+
<td>98.85%
|
245 |
+
</td>
|
246 |
+
</tr>
|
247 |
+
<tr>
|
248 |
+
<td><strong>Average</strong>
|
249 |
+
</td>
|
250 |
+
<td><strong>80.08</strong>
|
251 |
+
</td>
|
252 |
+
<td><strong>80.03</strong>
|
253 |
+
</td>
|
254 |
+
<td><strong>99.94%</strong>
|
255 |
+
</td>
|
256 |
+
</tr>
|
257 |
+
</table>
|