|
{ |
|
"results": { |
|
"mmlu": { |
|
"acc,none": 0.5438683948155534, |
|
"acc_stderr,none": 0.004046605401658642, |
|
"alias": "mmlu" |
|
}, |
|
"mmlu_humanities": { |
|
"alias": " - humanities", |
|
"acc,none": 0.4973432518597237, |
|
"acc_stderr,none": 0.0069921729107274965 |
|
}, |
|
"mmlu_formal_logic": { |
|
"alias": " - formal_logic", |
|
"acc,none": 0.36507936507936506, |
|
"acc_stderr,none": 0.04306241259127153 |
|
}, |
|
"mmlu_high_school_european_history": { |
|
"alias": " - high_school_european_history", |
|
"acc,none": 0.6484848484848484, |
|
"acc_stderr,none": 0.0372820699868265 |
|
}, |
|
"mmlu_high_school_us_history": { |
|
"alias": " - high_school_us_history", |
|
"acc,none": 0.6764705882352942, |
|
"acc_stderr,none": 0.03283472056108561 |
|
}, |
|
"mmlu_high_school_world_history": { |
|
"alias": " - high_school_world_history", |
|
"acc,none": 0.7088607594936709, |
|
"acc_stderr,none": 0.029571601065753374 |
|
}, |
|
"mmlu_international_law": { |
|
"alias": " - international_law", |
|
"acc,none": 0.6942148760330579, |
|
"acc_stderr,none": 0.04205953933884124 |
|
}, |
|
"mmlu_jurisprudence": { |
|
"alias": " - jurisprudence", |
|
"acc,none": 0.6851851851851852, |
|
"acc_stderr,none": 0.04489931073591312 |
|
}, |
|
"mmlu_logical_fallacies": { |
|
"alias": " - logical_fallacies", |
|
"acc,none": 0.7116564417177914, |
|
"acc_stderr,none": 0.035590395316173425 |
|
}, |
|
"mmlu_moral_disputes": { |
|
"alias": " - moral_disputes", |
|
"acc,none": 0.630057803468208, |
|
"acc_stderr,none": 0.025992472029306383 |
|
}, |
|
"mmlu_moral_scenarios": { |
|
"alias": " - moral_scenarios", |
|
"acc,none": 0.3195530726256983, |
|
"acc_stderr,none": 0.015595520294147402 |
|
}, |
|
"mmlu_philosophy": { |
|
"alias": " - philosophy", |
|
"acc,none": 0.594855305466238, |
|
"acc_stderr,none": 0.027882383791325953 |
|
}, |
|
"mmlu_prehistory": { |
|
"alias": " - prehistory", |
|
"acc,none": 0.5524691358024691, |
|
"acc_stderr,none": 0.027667138569422715 |
|
}, |
|
"mmlu_professional_law": { |
|
"alias": " - professional_law", |
|
"acc,none": 0.4048239895697523, |
|
"acc_stderr,none": 0.012536743830953994 |
|
}, |
|
"mmlu_world_religions": { |
|
"alias": " - world_religions", |
|
"acc,none": 0.6900584795321637, |
|
"acc_stderr,none": 0.035469769593931624 |
|
}, |
|
"mmlu_other": { |
|
"alias": " - other", |
|
"acc,none": 0.5909237206308336, |
|
"acc_stderr,none": 0.008549729756636936 |
|
}, |
|
"mmlu_business_ethics": { |
|
"alias": " - business_ethics", |
|
"acc,none": 0.61, |
|
"acc_stderr,none": 0.04902071300001974 |
|
}, |
|
"mmlu_clinical_knowledge": { |
|
"alias": " - clinical_knowledge", |
|
"acc,none": 0.5735849056603773, |
|
"acc_stderr,none": 0.030437794342983042 |
|
}, |
|
"mmlu_college_medicine": { |
|
"alias": " - college_medicine", |
|
"acc,none": 0.49710982658959535, |
|
"acc_stderr,none": 0.038124005659748335 |
|
}, |
|
"mmlu_global_facts": { |
|
"alias": " - global_facts", |
|
"acc,none": 0.34, |
|
"acc_stderr,none": 0.04760952285695235 |
|
}, |
|
"mmlu_human_aging": { |
|
"alias": " - human_aging", |
|
"acc,none": 0.5964125560538116, |
|
"acc_stderr,none": 0.032928028193303135 |
|
}, |
|
"mmlu_management": { |
|
"alias": " - management", |
|
"acc,none": 0.7669902912621359, |
|
"acc_stderr,none": 0.04185832598928315 |
|
}, |
|
"mmlu_marketing": { |
|
"alias": " - marketing", |
|
"acc,none": 0.8076923076923077, |
|
"acc_stderr,none": 0.025819233256483727 |
|
}, |
|
"mmlu_medical_genetics": { |
|
"alias": " - medical_genetics", |
|
"acc,none": 0.56, |
|
"acc_stderr,none": 0.04988876515698589 |
|
}, |
|
"mmlu_miscellaneous": { |
|
"alias": " - miscellaneous", |
|
"acc,none": 0.6845466155810983, |
|
"acc_stderr,none": 0.016617501738763397 |
|
}, |
|
"mmlu_nutrition": { |
|
"alias": " - nutrition", |
|
"acc,none": 0.6503267973856209, |
|
"acc_stderr,none": 0.0273053080762747 |
|
}, |
|
"mmlu_professional_accounting": { |
|
"alias": " - professional_accounting", |
|
"acc,none": 0.42907801418439717, |
|
"acc_stderr,none": 0.02952591430255855 |
|
}, |
|
"mmlu_professional_medicine": { |
|
"alias": " - professional_medicine", |
|
"acc,none": 0.4338235294117647, |
|
"acc_stderr,none": 0.03010563657001664 |
|
}, |
|
"mmlu_virology": { |
|
"alias": " - virology", |
|
"acc,none": 0.43373493975903615, |
|
"acc_stderr,none": 0.03858158940685515 |
|
}, |
|
"mmlu_social_sciences": { |
|
"alias": " - social_sciences", |
|
"acc,none": 0.6360090997725056, |
|
"acc_stderr,none": 0.008459352068826637 |
|
}, |
|
"mmlu_econometrics": { |
|
"alias": " - econometrics", |
|
"acc,none": 0.34210526315789475, |
|
"acc_stderr,none": 0.04462917535336936 |
|
}, |
|
"mmlu_high_school_geography": { |
|
"alias": " - high_school_geography", |
|
"acc,none": 0.7272727272727273, |
|
"acc_stderr,none": 0.03173071239071724 |
|
}, |
|
"mmlu_high_school_government_and_politics": { |
|
"alias": " - high_school_government_and_politics", |
|
"acc,none": 0.7979274611398963, |
|
"acc_stderr,none": 0.02897908979429673 |
|
}, |
|
"mmlu_high_school_macroeconomics": { |
|
"alias": " - high_school_macroeconomics", |
|
"acc,none": 0.5384615384615384, |
|
"acc_stderr,none": 0.025275892070240644 |
|
}, |
|
"mmlu_high_school_microeconomics": { |
|
"alias": " - high_school_microeconomics", |
|
"acc,none": 0.6176470588235294, |
|
"acc_stderr,none": 0.03156663099215416 |
|
}, |
|
"mmlu_high_school_psychology": { |
|
"alias": " - high_school_psychology", |
|
"acc,none": 0.7321100917431193, |
|
"acc_stderr,none": 0.018987462257978652 |
|
}, |
|
"mmlu_human_sexuality": { |
|
"alias": " - human_sexuality", |
|
"acc,none": 0.6412213740458015, |
|
"acc_stderr,none": 0.04206739313864908 |
|
}, |
|
"mmlu_professional_psychology": { |
|
"alias": " - professional_psychology", |
|
"acc,none": 0.5294117647058824, |
|
"acc_stderr,none": 0.020192808271433788 |
|
}, |
|
"mmlu_public_relations": { |
|
"alias": " - public_relations", |
|
"acc,none": 0.5636363636363636, |
|
"acc_stderr,none": 0.04750185058907296 |
|
}, |
|
"mmlu_security_studies": { |
|
"alias": " - security_studies", |
|
"acc,none": 0.689795918367347, |
|
"acc_stderr,none": 0.02961345987248438 |
|
}, |
|
"mmlu_sociology": { |
|
"alias": " - sociology", |
|
"acc,none": 0.736318407960199, |
|
"acc_stderr,none": 0.031157150869355568 |
|
}, |
|
"mmlu_us_foreign_policy": { |
|
"alias": " - us_foreign_policy", |
|
"acc,none": 0.77, |
|
"acc_stderr,none": 0.042295258468165044 |
|
}, |
|
"mmlu_stem": { |
|
"alias": " - stem", |
|
"acc,none": 0.4770060260069775, |
|
"acc_stderr,none": 0.00876253277535237 |
|
}, |
|
"mmlu_abstract_algebra": { |
|
"alias": " - abstract_algebra", |
|
"acc,none": 0.38, |
|
"acc_stderr,none": 0.04878317312145633 |
|
}, |
|
"mmlu_anatomy": { |
|
"alias": " - anatomy", |
|
"acc,none": 0.4666666666666667, |
|
"acc_stderr,none": 0.043097329010363554 |
|
}, |
|
"mmlu_astronomy": { |
|
"alias": " - astronomy", |
|
"acc,none": 0.5526315789473685, |
|
"acc_stderr,none": 0.04046336883978251 |
|
}, |
|
"mmlu_college_biology": { |
|
"alias": " - college_biology", |
|
"acc,none": 0.5486111111111112, |
|
"acc_stderr,none": 0.04161402398403279 |
|
}, |
|
"mmlu_college_chemistry": { |
|
"alias": " - college_chemistry", |
|
"acc,none": 0.39, |
|
"acc_stderr,none": 0.04902071300001975 |
|
}, |
|
"mmlu_college_computer_science": { |
|
"alias": " - college_computer_science", |
|
"acc,none": 0.53, |
|
"acc_stderr,none": 0.05016135580465919 |
|
}, |
|
"mmlu_college_mathematics": { |
|
"alias": " - college_mathematics", |
|
"acc,none": 0.31, |
|
"acc_stderr,none": 0.04648231987117316 |
|
}, |
|
"mmlu_college_physics": { |
|
"alias": " - college_physics", |
|
"acc,none": 0.37254901960784315, |
|
"acc_stderr,none": 0.04810840148082633 |
|
}, |
|
"mmlu_computer_security": { |
|
"alias": " - computer_security", |
|
"acc,none": 0.71, |
|
"acc_stderr,none": 0.045604802157206845 |
|
}, |
|
"mmlu_conceptual_physics": { |
|
"alias": " - conceptual_physics", |
|
"acc,none": 0.4765957446808511, |
|
"acc_stderr,none": 0.03265019475033582 |
|
}, |
|
"mmlu_electrical_engineering": { |
|
"alias": " - electrical_engineering", |
|
"acc,none": 0.5793103448275863, |
|
"acc_stderr,none": 0.0411391498118926 |
|
}, |
|
"mmlu_elementary_mathematics": { |
|
"alias": " - elementary_mathematics", |
|
"acc,none": 0.4417989417989418, |
|
"acc_stderr,none": 0.025576257061253833 |
|
}, |
|
"mmlu_high_school_biology": { |
|
"alias": " - high_school_biology", |
|
"acc,none": 0.6161290322580645, |
|
"acc_stderr,none": 0.027666182075539645 |
|
}, |
|
"mmlu_high_school_chemistry": { |
|
"alias": " - high_school_chemistry", |
|
"acc,none": 0.46798029556650245, |
|
"acc_stderr,none": 0.035107665979592154 |
|
}, |
|
"mmlu_high_school_computer_science": { |
|
"alias": " - high_school_computer_science", |
|
"acc,none": 0.56, |
|
"acc_stderr,none": 0.04988876515698589 |
|
}, |
|
"mmlu_high_school_mathematics": { |
|
"alias": " - high_school_mathematics", |
|
"acc,none": 0.37777777777777777, |
|
"acc_stderr,none": 0.029560707392465718 |
|
}, |
|
"mmlu_high_school_physics": { |
|
"alias": " - high_school_physics", |
|
"acc,none": 0.33774834437086093, |
|
"acc_stderr,none": 0.03861557546255169 |
|
}, |
|
"mmlu_high_school_statistics": { |
|
"alias": " - high_school_statistics", |
|
"acc,none": 0.4861111111111111, |
|
"acc_stderr,none": 0.03408655867977749 |
|
}, |
|
"mmlu_machine_learning": { |
|
"alias": " - machine_learning", |
|
"acc,none": 0.4017857142857143, |
|
"acc_stderr,none": 0.04653333146973647 |
|
} |
|
}, |
|
"groups": { |
|
"mmlu": { |
|
"acc,none": 0.5438683948155534, |
|
"acc_stderr,none": 0.004046605401658642, |
|
"alias": "mmlu" |
|
}, |
|
"mmlu_humanities": { |
|
"alias": " - humanities", |
|
"acc,none": 0.4973432518597237, |
|
"acc_stderr,none": 0.0069921729107274965 |
|
}, |
|
"mmlu_other": { |
|
"alias": " - other", |
|
"acc,none": 0.5909237206308336, |
|
"acc_stderr,none": 0.008549729756636936 |
|
}, |
|
"mmlu_social_sciences": { |
|
"alias": " - social_sciences", |
|
"acc,none": 0.6360090997725056, |
|
"acc_stderr,none": 0.008459352068826637 |
|
}, |
|
"mmlu_stem": { |
|
"alias": " - stem", |
|
"acc,none": 0.4770060260069775, |
|
"acc_stderr,none": 0.00876253277535237 |
|
} |
|
}, |
|
"group_subtasks": { |
|
"mmlu_stem": [ |
|
"mmlu_abstract_algebra", |
|
"mmlu_college_biology", |
|
"mmlu_high_school_biology", |
|
"mmlu_conceptual_physics", |
|
"mmlu_computer_security", |
|
"mmlu_college_physics", |
|
"mmlu_college_chemistry", |
|
"mmlu_high_school_statistics", |
|
"mmlu_anatomy", |
|
"mmlu_high_school_mathematics", |
|
"mmlu_machine_learning", |
|
"mmlu_high_school_physics", |
|
"mmlu_electrical_engineering", |
|
"mmlu_college_computer_science", |
|
"mmlu_high_school_chemistry", |
|
"mmlu_astronomy", |
|
"mmlu_high_school_computer_science", |
|
"mmlu_elementary_mathematics", |
|
"mmlu_college_mathematics" |
|
], |
|
"mmlu_other": [ |
|
"mmlu_business_ethics", |
|
"mmlu_marketing", |
|
"mmlu_medical_genetics", |
|
"mmlu_clinical_knowledge", |
|
"mmlu_global_facts", |
|
"mmlu_human_aging", |
|
"mmlu_professional_medicine", |
|
"mmlu_nutrition", |
|
"mmlu_management", |
|
"mmlu_college_medicine", |
|
"mmlu_professional_accounting", |
|
"mmlu_virology", |
|
"mmlu_miscellaneous" |
|
], |
|
"mmlu_social_sciences": [ |
|
"mmlu_public_relations", |
|
"mmlu_high_school_macroeconomics", |
|
"mmlu_human_sexuality", |
|
"mmlu_high_school_geography", |
|
"mmlu_high_school_psychology", |
|
"mmlu_high_school_microeconomics", |
|
"mmlu_high_school_government_and_politics", |
|
"mmlu_us_foreign_policy", |
|
"mmlu_sociology", |
|
"mmlu_security_studies", |
|
"mmlu_econometrics", |
|
"mmlu_professional_psychology" |
|
], |
|
"mmlu_humanities": [ |
|
"mmlu_philosophy", |
|
"mmlu_logical_fallacies", |
|
"mmlu_moral_disputes", |
|
"mmlu_jurisprudence", |
|
"mmlu_high_school_us_history", |
|
"mmlu_high_school_world_history", |
|
"mmlu_world_religions", |
|
"mmlu_moral_scenarios", |
|
"mmlu_prehistory", |
|
"mmlu_formal_logic", |
|
"mmlu_international_law", |
|
"mmlu_professional_law", |
|
"mmlu_high_school_european_history" |
|
], |
|
"mmlu": [ |
|
"mmlu_humanities", |
|
"mmlu_social_sciences", |
|
"mmlu_other", |
|
"mmlu_stem" |
|
] |
|
}, |
|
"configs": { |
|
"mmlu_abstract_algebra": { |
|
"task": "mmlu_abstract_algebra", |
|
"task_alias": "abstract_algebra", |
|
"group": "mmlu_stem", |
|
"group_alias": "stem", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "abstract_algebra", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about abstract algebra.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_anatomy": { |
|
"task": "mmlu_anatomy", |
|
"task_alias": "anatomy", |
|
"group": "mmlu_stem", |
|
"group_alias": "stem", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "anatomy", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about anatomy.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_astronomy": { |
|
"task": "mmlu_astronomy", |
|
"task_alias": "astronomy", |
|
"group": "mmlu_stem", |
|
"group_alias": "stem", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "astronomy", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about astronomy.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_business_ethics": { |
|
"task": "mmlu_business_ethics", |
|
"task_alias": "business_ethics", |
|
"group": "mmlu_other", |
|
"group_alias": "other", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "business_ethics", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about business ethics.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_clinical_knowledge": { |
|
"task": "mmlu_clinical_knowledge", |
|
"task_alias": "clinical_knowledge", |
|
"group": "mmlu_other", |
|
"group_alias": "other", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "clinical_knowledge", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about clinical knowledge.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_college_biology": { |
|
"task": "mmlu_college_biology", |
|
"task_alias": "college_biology", |
|
"group": "mmlu_stem", |
|
"group_alias": "stem", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "college_biology", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about college biology.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_college_chemistry": { |
|
"task": "mmlu_college_chemistry", |
|
"task_alias": "college_chemistry", |
|
"group": "mmlu_stem", |
|
"group_alias": "stem", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "college_chemistry", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about college chemistry.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_college_computer_science": { |
|
"task": "mmlu_college_computer_science", |
|
"task_alias": "college_computer_science", |
|
"group": "mmlu_stem", |
|
"group_alias": "stem", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "college_computer_science", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about college computer science.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_college_mathematics": { |
|
"task": "mmlu_college_mathematics", |
|
"task_alias": "college_mathematics", |
|
"group": "mmlu_stem", |
|
"group_alias": "stem", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "college_mathematics", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about college mathematics.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_college_medicine": { |
|
"task": "mmlu_college_medicine", |
|
"task_alias": "college_medicine", |
|
"group": "mmlu_other", |
|
"group_alias": "other", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "college_medicine", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about college medicine.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_college_physics": { |
|
"task": "mmlu_college_physics", |
|
"task_alias": "college_physics", |
|
"group": "mmlu_stem", |
|
"group_alias": "stem", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "college_physics", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about college physics.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_computer_security": { |
|
"task": "mmlu_computer_security", |
|
"task_alias": "computer_security", |
|
"group": "mmlu_stem", |
|
"group_alias": "stem", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "computer_security", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about computer security.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_conceptual_physics": { |
|
"task": "mmlu_conceptual_physics", |
|
"task_alias": "conceptual_physics", |
|
"group": "mmlu_stem", |
|
"group_alias": "stem", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "conceptual_physics", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about conceptual physics.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_econometrics": { |
|
"task": "mmlu_econometrics", |
|
"task_alias": "econometrics", |
|
"group": "mmlu_social_sciences", |
|
"group_alias": "social_sciences", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "econometrics", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about econometrics.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_electrical_engineering": { |
|
"task": "mmlu_electrical_engineering", |
|
"task_alias": "electrical_engineering", |
|
"group": "mmlu_stem", |
|
"group_alias": "stem", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "electrical_engineering", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about electrical engineering.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_elementary_mathematics": { |
|
"task": "mmlu_elementary_mathematics", |
|
"task_alias": "elementary_mathematics", |
|
"group": "mmlu_stem", |
|
"group_alias": "stem", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "elementary_mathematics", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about elementary mathematics.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_formal_logic": { |
|
"task": "mmlu_formal_logic", |
|
"task_alias": "formal_logic", |
|
"group": "mmlu_humanities", |
|
"group_alias": "humanities", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "formal_logic", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about formal logic.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_global_facts": { |
|
"task": "mmlu_global_facts", |
|
"task_alias": "global_facts", |
|
"group": "mmlu_other", |
|
"group_alias": "other", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "global_facts", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about global facts.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_high_school_biology": { |
|
"task": "mmlu_high_school_biology", |
|
"task_alias": "high_school_biology", |
|
"group": "mmlu_stem", |
|
"group_alias": "stem", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_biology", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school biology.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_high_school_chemistry": { |
|
"task": "mmlu_high_school_chemistry", |
|
"task_alias": "high_school_chemistry", |
|
"group": "mmlu_stem", |
|
"group_alias": "stem", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_chemistry", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school chemistry.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_high_school_computer_science": { |
|
"task": "mmlu_high_school_computer_science", |
|
"task_alias": "high_school_computer_science", |
|
"group": "mmlu_stem", |
|
"group_alias": "stem", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_computer_science", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school computer science.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_high_school_european_history": { |
|
"task": "mmlu_high_school_european_history", |
|
"task_alias": "high_school_european_history", |
|
"group": "mmlu_humanities", |
|
"group_alias": "humanities", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_european_history", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school european history.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_high_school_geography": { |
|
"task": "mmlu_high_school_geography", |
|
"task_alias": "high_school_geography", |
|
"group": "mmlu_social_sciences", |
|
"group_alias": "social_sciences", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_geography", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school geography.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_high_school_government_and_politics": { |
|
"task": "mmlu_high_school_government_and_politics", |
|
"task_alias": "high_school_government_and_politics", |
|
"group": "mmlu_social_sciences", |
|
"group_alias": "social_sciences", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_government_and_politics", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school government and politics.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_high_school_macroeconomics": { |
|
"task": "mmlu_high_school_macroeconomics", |
|
"task_alias": "high_school_macroeconomics", |
|
"group": "mmlu_social_sciences", |
|
"group_alias": "social_sciences", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_macroeconomics", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school macroeconomics.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_high_school_mathematics": { |
|
"task": "mmlu_high_school_mathematics", |
|
"task_alias": "high_school_mathematics", |
|
"group": "mmlu_stem", |
|
"group_alias": "stem", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_mathematics", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school mathematics.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_high_school_microeconomics": { |
|
"task": "mmlu_high_school_microeconomics", |
|
"task_alias": "high_school_microeconomics", |
|
"group": "mmlu_social_sciences", |
|
"group_alias": "social_sciences", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_microeconomics", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school microeconomics.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_high_school_physics": { |
|
"task": "mmlu_high_school_physics", |
|
"task_alias": "high_school_physics", |
|
"group": "mmlu_stem", |
|
"group_alias": "stem", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_physics", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school physics.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_high_school_psychology": { |
|
"task": "mmlu_high_school_psychology", |
|
"task_alias": "high_school_psychology", |
|
"group": "mmlu_social_sciences", |
|
"group_alias": "social_sciences", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_psychology", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school psychology.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_high_school_statistics": { |
|
"task": "mmlu_high_school_statistics", |
|
"task_alias": "high_school_statistics", |
|
"group": "mmlu_stem", |
|
"group_alias": "stem", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_statistics", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school statistics.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_high_school_us_history": { |
|
"task": "mmlu_high_school_us_history", |
|
"task_alias": "high_school_us_history", |
|
"group": "mmlu_humanities", |
|
"group_alias": "humanities", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_us_history", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school us history.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_high_school_world_history": { |
|
"task": "mmlu_high_school_world_history", |
|
"task_alias": "high_school_world_history", |
|
"group": "mmlu_humanities", |
|
"group_alias": "humanities", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_world_history", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school world history.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_human_aging": { |
|
"task": "mmlu_human_aging", |
|
"task_alias": "human_aging", |
|
"group": "mmlu_other", |
|
"group_alias": "other", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "human_aging", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about human aging.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_human_sexuality": { |
|
"task": "mmlu_human_sexuality", |
|
"task_alias": "human_sexuality", |
|
"group": "mmlu_social_sciences", |
|
"group_alias": "social_sciences", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "human_sexuality", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about human sexuality.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_international_law": { |
|
"task": "mmlu_international_law", |
|
"task_alias": "international_law", |
|
"group": "mmlu_humanities", |
|
"group_alias": "humanities", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "international_law", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about international law.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_jurisprudence": { |
|
"task": "mmlu_jurisprudence", |
|
"task_alias": "jurisprudence", |
|
"group": "mmlu_humanities", |
|
"group_alias": "humanities", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "jurisprudence", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about jurisprudence.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_logical_fallacies": { |
|
"task": "mmlu_logical_fallacies", |
|
"task_alias": "logical_fallacies", |
|
"group": "mmlu_humanities", |
|
"group_alias": "humanities", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "logical_fallacies", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about logical fallacies.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_machine_learning": { |
|
"task": "mmlu_machine_learning", |
|
"task_alias": "machine_learning", |
|
"group": "mmlu_stem", |
|
"group_alias": "stem", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "machine_learning", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about machine learning.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_management": { |
|
"task": "mmlu_management", |
|
"task_alias": "management", |
|
"group": "mmlu_other", |
|
"group_alias": "other", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "management", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about management.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_marketing": { |
|
"task": "mmlu_marketing", |
|
"task_alias": "marketing", |
|
"group": "mmlu_other", |
|
"group_alias": "other", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "marketing", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about marketing.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_medical_genetics": { |
|
"task": "mmlu_medical_genetics", |
|
"task_alias": "medical_genetics", |
|
"group": "mmlu_other", |
|
"group_alias": "other", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "medical_genetics", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about medical genetics.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_miscellaneous": { |
|
"task": "mmlu_miscellaneous", |
|
"task_alias": "miscellaneous", |
|
"group": "mmlu_other", |
|
"group_alias": "other", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "miscellaneous", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about miscellaneous.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_moral_disputes": { |
|
"task": "mmlu_moral_disputes", |
|
"task_alias": "moral_disputes", |
|
"group": "mmlu_humanities", |
|
"group_alias": "humanities", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "moral_disputes", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about moral disputes.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_moral_scenarios": { |
|
"task": "mmlu_moral_scenarios", |
|
"task_alias": "moral_scenarios", |
|
"group": "mmlu_humanities", |
|
"group_alias": "humanities", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "moral_scenarios", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about moral scenarios.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_nutrition": { |
|
"task": "mmlu_nutrition", |
|
"task_alias": "nutrition", |
|
"group": "mmlu_other", |
|
"group_alias": "other", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "nutrition", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about nutrition.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_philosophy": { |
|
"task": "mmlu_philosophy", |
|
"task_alias": "philosophy", |
|
"group": "mmlu_humanities", |
|
"group_alias": "humanities", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "philosophy", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about philosophy.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_prehistory": { |
|
"task": "mmlu_prehistory", |
|
"task_alias": "prehistory", |
|
"group": "mmlu_humanities", |
|
"group_alias": "humanities", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "prehistory", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about prehistory.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_professional_accounting": { |
|
"task": "mmlu_professional_accounting", |
|
"task_alias": "professional_accounting", |
|
"group": "mmlu_other", |
|
"group_alias": "other", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "professional_accounting", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about professional accounting.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_professional_law": { |
|
"task": "mmlu_professional_law", |
|
"task_alias": "professional_law", |
|
"group": "mmlu_humanities", |
|
"group_alias": "humanities", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "professional_law", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about professional law.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_professional_medicine": { |
|
"task": "mmlu_professional_medicine", |
|
"task_alias": "professional_medicine", |
|
"group": "mmlu_other", |
|
"group_alias": "other", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "professional_medicine", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about professional medicine.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_professional_psychology": { |
|
"task": "mmlu_professional_psychology", |
|
"task_alias": "professional_psychology", |
|
"group": "mmlu_social_sciences", |
|
"group_alias": "social_sciences", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "professional_psychology", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about professional psychology.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_public_relations": { |
|
"task": "mmlu_public_relations", |
|
"task_alias": "public_relations", |
|
"group": "mmlu_social_sciences", |
|
"group_alias": "social_sciences", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "public_relations", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about public relations.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_security_studies": { |
|
"task": "mmlu_security_studies", |
|
"task_alias": "security_studies", |
|
"group": "mmlu_social_sciences", |
|
"group_alias": "social_sciences", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "security_studies", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about security studies.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_sociology": { |
|
"task": "mmlu_sociology", |
|
"task_alias": "sociology", |
|
"group": "mmlu_social_sciences", |
|
"group_alias": "social_sciences", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "sociology", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about sociology.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_us_foreign_policy": { |
|
"task": "mmlu_us_foreign_policy", |
|
"task_alias": "us_foreign_policy", |
|
"group": "mmlu_social_sciences", |
|
"group_alias": "social_sciences", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "us_foreign_policy", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about us foreign policy.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_virology": { |
|
"task": "mmlu_virology", |
|
"task_alias": "virology", |
|
"group": "mmlu_other", |
|
"group_alias": "other", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "virology", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about virology.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_world_religions": { |
|
"task": "mmlu_world_religions", |
|
"task_alias": "world_religions", |
|
"group": "mmlu_humanities", |
|
"group_alias": "humanities", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "world_religions", |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about world religions.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
} |
|
}, |
|
"versions": { |
|
"mmlu_abstract_algebra": 0.0, |
|
"mmlu_anatomy": 0.0, |
|
"mmlu_astronomy": 0.0, |
|
"mmlu_business_ethics": 0.0, |
|
"mmlu_clinical_knowledge": 0.0, |
|
"mmlu_college_biology": 0.0, |
|
"mmlu_college_chemistry": 0.0, |
|
"mmlu_college_computer_science": 0.0, |
|
"mmlu_college_mathematics": 0.0, |
|
"mmlu_college_medicine": 0.0, |
|
"mmlu_college_physics": 0.0, |
|
"mmlu_computer_security": 0.0, |
|
"mmlu_conceptual_physics": 0.0, |
|
"mmlu_econometrics": 0.0, |
|
"mmlu_electrical_engineering": 0.0, |
|
"mmlu_elementary_mathematics": 0.0, |
|
"mmlu_formal_logic": 0.0, |
|
"mmlu_global_facts": 0.0, |
|
"mmlu_high_school_biology": 0.0, |
|
"mmlu_high_school_chemistry": 0.0, |
|
"mmlu_high_school_computer_science": 0.0, |
|
"mmlu_high_school_european_history": 0.0, |
|
"mmlu_high_school_geography": 0.0, |
|
"mmlu_high_school_government_and_politics": 0.0, |
|
"mmlu_high_school_macroeconomics": 0.0, |
|
"mmlu_high_school_mathematics": 0.0, |
|
"mmlu_high_school_microeconomics": 0.0, |
|
"mmlu_high_school_physics": 0.0, |
|
"mmlu_high_school_psychology": 0.0, |
|
"mmlu_high_school_statistics": 0.0, |
|
"mmlu_high_school_us_history": 0.0, |
|
"mmlu_high_school_world_history": 0.0, |
|
"mmlu_human_aging": 0.0, |
|
"mmlu_human_sexuality": 0.0, |
|
"mmlu_international_law": 0.0, |
|
"mmlu_jurisprudence": 0.0, |
|
"mmlu_logical_fallacies": 0.0, |
|
"mmlu_machine_learning": 0.0, |
|
"mmlu_management": 0.0, |
|
"mmlu_marketing": 0.0, |
|
"mmlu_medical_genetics": 0.0, |
|
"mmlu_miscellaneous": 0.0, |
|
"mmlu_moral_disputes": 0.0, |
|
"mmlu_moral_scenarios": 0.0, |
|
"mmlu_nutrition": 0.0, |
|
"mmlu_philosophy": 0.0, |
|
"mmlu_prehistory": 0.0, |
|
"mmlu_professional_accounting": 0.0, |
|
"mmlu_professional_law": 0.0, |
|
"mmlu_professional_medicine": 0.0, |
|
"mmlu_professional_psychology": 0.0, |
|
"mmlu_public_relations": 0.0, |
|
"mmlu_security_studies": 0.0, |
|
"mmlu_sociology": 0.0, |
|
"mmlu_us_foreign_policy": 0.0, |
|
"mmlu_virology": 0.0, |
|
"mmlu_world_religions": 0.0 |
|
}, |
|
"n-shot": { |
|
"mmlu": 0, |
|
"mmlu_abstract_algebra": 5, |
|
"mmlu_anatomy": 5, |
|
"mmlu_astronomy": 5, |
|
"mmlu_business_ethics": 5, |
|
"mmlu_clinical_knowledge": 5, |
|
"mmlu_college_biology": 5, |
|
"mmlu_college_chemistry": 5, |
|
"mmlu_college_computer_science": 5, |
|
"mmlu_college_mathematics": 5, |
|
"mmlu_college_medicine": 5, |
|
"mmlu_college_physics": 5, |
|
"mmlu_computer_security": 5, |
|
"mmlu_conceptual_physics": 5, |
|
"mmlu_econometrics": 5, |
|
"mmlu_electrical_engineering": 5, |
|
"mmlu_elementary_mathematics": 5, |
|
"mmlu_formal_logic": 5, |
|
"mmlu_global_facts": 5, |
|
"mmlu_high_school_biology": 5, |
|
"mmlu_high_school_chemistry": 5, |
|
"mmlu_high_school_computer_science": 5, |
|
"mmlu_high_school_european_history": 5, |
|
"mmlu_high_school_geography": 5, |
|
"mmlu_high_school_government_and_politics": 5, |
|
"mmlu_high_school_macroeconomics": 5, |
|
"mmlu_high_school_mathematics": 5, |
|
"mmlu_high_school_microeconomics": 5, |
|
"mmlu_high_school_physics": 5, |
|
"mmlu_high_school_psychology": 5, |
|
"mmlu_high_school_statistics": 5, |
|
"mmlu_high_school_us_history": 5, |
|
"mmlu_high_school_world_history": 5, |
|
"mmlu_human_aging": 5, |
|
"mmlu_human_sexuality": 5, |
|
"mmlu_humanities": 5, |
|
"mmlu_international_law": 5, |
|
"mmlu_jurisprudence": 5, |
|
"mmlu_logical_fallacies": 5, |
|
"mmlu_machine_learning": 5, |
|
"mmlu_management": 5, |
|
"mmlu_marketing": 5, |
|
"mmlu_medical_genetics": 5, |
|
"mmlu_miscellaneous": 5, |
|
"mmlu_moral_disputes": 5, |
|
"mmlu_moral_scenarios": 5, |
|
"mmlu_nutrition": 5, |
|
"mmlu_other": 5, |
|
"mmlu_philosophy": 5, |
|
"mmlu_prehistory": 5, |
|
"mmlu_professional_accounting": 5, |
|
"mmlu_professional_law": 5, |
|
"mmlu_professional_medicine": 5, |
|
"mmlu_professional_psychology": 5, |
|
"mmlu_public_relations": 5, |
|
"mmlu_security_studies": 5, |
|
"mmlu_social_sciences": 5, |
|
"mmlu_sociology": 5, |
|
"mmlu_stem": 5, |
|
"mmlu_us_foreign_policy": 5, |
|
"mmlu_virology": 5, |
|
"mmlu_world_religions": 5 |
|
}, |
|
"higher_is_better": { |
|
"mmlu": { |
|
"acc": true |
|
}, |
|
"mmlu_abstract_algebra": { |
|
"acc": true |
|
}, |
|
"mmlu_anatomy": { |
|
"acc": true |
|
}, |
|
"mmlu_astronomy": { |
|
"acc": true |
|
}, |
|
"mmlu_business_ethics": { |
|
"acc": true |
|
}, |
|
"mmlu_clinical_knowledge": { |
|
"acc": true |
|
}, |
|
"mmlu_college_biology": { |
|
"acc": true |
|
}, |
|
"mmlu_college_chemistry": { |
|
"acc": true |
|
}, |
|
"mmlu_college_computer_science": { |
|
"acc": true |
|
}, |
|
"mmlu_college_mathematics": { |
|
"acc": true |
|
}, |
|
"mmlu_college_medicine": { |
|
"acc": true |
|
}, |
|
"mmlu_college_physics": { |
|
"acc": true |
|
}, |
|
"mmlu_computer_security": { |
|
"acc": true |
|
}, |
|
"mmlu_conceptual_physics": { |
|
"acc": true |
|
}, |
|
"mmlu_econometrics": { |
|
"acc": true |
|
}, |
|
"mmlu_electrical_engineering": { |
|
"acc": true |
|
}, |
|
"mmlu_elementary_mathematics": { |
|
"acc": true |
|
}, |
|
"mmlu_formal_logic": { |
|
"acc": true |
|
}, |
|
"mmlu_global_facts": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_biology": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_chemistry": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_computer_science": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_european_history": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_geography": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_government_and_politics": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_macroeconomics": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_mathematics": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_microeconomics": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_physics": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_psychology": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_statistics": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_us_history": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_world_history": { |
|
"acc": true |
|
}, |
|
"mmlu_human_aging": { |
|
"acc": true |
|
}, |
|
"mmlu_human_sexuality": { |
|
"acc": true |
|
}, |
|
"mmlu_humanities": { |
|
"acc": true |
|
}, |
|
"mmlu_international_law": { |
|
"acc": true |
|
}, |
|
"mmlu_jurisprudence": { |
|
"acc": true |
|
}, |
|
"mmlu_logical_fallacies": { |
|
"acc": true |
|
}, |
|
"mmlu_machine_learning": { |
|
"acc": true |
|
}, |
|
"mmlu_management": { |
|
"acc": true |
|
}, |
|
"mmlu_marketing": { |
|
"acc": true |
|
}, |
|
"mmlu_medical_genetics": { |
|
"acc": true |
|
}, |
|
"mmlu_miscellaneous": { |
|
"acc": true |
|
}, |
|
"mmlu_moral_disputes": { |
|
"acc": true |
|
}, |
|
"mmlu_moral_scenarios": { |
|
"acc": true |
|
}, |
|
"mmlu_nutrition": { |
|
"acc": true |
|
}, |
|
"mmlu_other": { |
|
"acc": true |
|
}, |
|
"mmlu_philosophy": { |
|
"acc": true |
|
}, |
|
"mmlu_prehistory": { |
|
"acc": true |
|
}, |
|
"mmlu_professional_accounting": { |
|
"acc": true |
|
}, |
|
"mmlu_professional_law": { |
|
"acc": true |
|
}, |
|
"mmlu_professional_medicine": { |
|
"acc": true |
|
}, |
|
"mmlu_professional_psychology": { |
|
"acc": true |
|
}, |
|
"mmlu_public_relations": { |
|
"acc": true |
|
}, |
|
"mmlu_security_studies": { |
|
"acc": true |
|
}, |
|
"mmlu_social_sciences": { |
|
"acc": true |
|
}, |
|
"mmlu_sociology": { |
|
"acc": true |
|
}, |
|
"mmlu_stem": { |
|
"acc": true |
|
}, |
|
"mmlu_us_foreign_policy": { |
|
"acc": true |
|
}, |
|
"mmlu_virology": { |
|
"acc": true |
|
}, |
|
"mmlu_world_religions": { |
|
"acc": true |
|
} |
|
}, |
|
"n-samples": { |
|
"mmlu_philosophy": { |
|
"original": 311, |
|
"effective": 311 |
|
}, |
|
"mmlu_logical_fallacies": { |
|
"original": 163, |
|
"effective": 163 |
|
}, |
|
"mmlu_moral_disputes": { |
|
"original": 346, |
|
"effective": 346 |
|
}, |
|
"mmlu_jurisprudence": { |
|
"original": 108, |
|
"effective": 108 |
|
}, |
|
"mmlu_high_school_us_history": { |
|
"original": 204, |
|
"effective": 204 |
|
}, |
|
"mmlu_high_school_world_history": { |
|
"original": 237, |
|
"effective": 237 |
|
}, |
|
"mmlu_world_religions": { |
|
"original": 171, |
|
"effective": 171 |
|
}, |
|
"mmlu_moral_scenarios": { |
|
"original": 895, |
|
"effective": 895 |
|
}, |
|
"mmlu_prehistory": { |
|
"original": 324, |
|
"effective": 324 |
|
}, |
|
"mmlu_formal_logic": { |
|
"original": 126, |
|
"effective": 126 |
|
}, |
|
"mmlu_international_law": { |
|
"original": 121, |
|
"effective": 121 |
|
}, |
|
"mmlu_professional_law": { |
|
"original": 1534, |
|
"effective": 1534 |
|
}, |
|
"mmlu_high_school_european_history": { |
|
"original": 165, |
|
"effective": 165 |
|
}, |
|
"mmlu_public_relations": { |
|
"original": 110, |
|
"effective": 110 |
|
}, |
|
"mmlu_high_school_macroeconomics": { |
|
"original": 390, |
|
"effective": 390 |
|
}, |
|
"mmlu_human_sexuality": { |
|
"original": 131, |
|
"effective": 131 |
|
}, |
|
"mmlu_high_school_geography": { |
|
"original": 198, |
|
"effective": 198 |
|
}, |
|
"mmlu_high_school_psychology": { |
|
"original": 545, |
|
"effective": 545 |
|
}, |
|
"mmlu_high_school_microeconomics": { |
|
"original": 238, |
|
"effective": 238 |
|
}, |
|
"mmlu_high_school_government_and_politics": { |
|
"original": 193, |
|
"effective": 193 |
|
}, |
|
"mmlu_us_foreign_policy": { |
|
"original": 100, |
|
"effective": 100 |
|
}, |
|
"mmlu_sociology": { |
|
"original": 201, |
|
"effective": 201 |
|
}, |
|
"mmlu_security_studies": { |
|
"original": 245, |
|
"effective": 245 |
|
}, |
|
"mmlu_econometrics": { |
|
"original": 114, |
|
"effective": 114 |
|
}, |
|
"mmlu_professional_psychology": { |
|
"original": 612, |
|
"effective": 612 |
|
}, |
|
"mmlu_business_ethics": { |
|
"original": 100, |
|
"effective": 100 |
|
}, |
|
"mmlu_marketing": { |
|
"original": 234, |
|
"effective": 234 |
|
}, |
|
"mmlu_medical_genetics": { |
|
"original": 100, |
|
"effective": 100 |
|
}, |
|
"mmlu_clinical_knowledge": { |
|
"original": 265, |
|
"effective": 265 |
|
}, |
|
"mmlu_global_facts": { |
|
"original": 100, |
|
"effective": 100 |
|
}, |
|
"mmlu_human_aging": { |
|
"original": 223, |
|
"effective": 223 |
|
}, |
|
"mmlu_professional_medicine": { |
|
"original": 272, |
|
"effective": 272 |
|
}, |
|
"mmlu_nutrition": { |
|
"original": 306, |
|
"effective": 306 |
|
}, |
|
"mmlu_management": { |
|
"original": 103, |
|
"effective": 103 |
|
}, |
|
"mmlu_college_medicine": { |
|
"original": 173, |
|
"effective": 173 |
|
}, |
|
"mmlu_professional_accounting": { |
|
"original": 282, |
|
"effective": 282 |
|
}, |
|
"mmlu_virology": { |
|
"original": 166, |
|
"effective": 166 |
|
}, |
|
"mmlu_miscellaneous": { |
|
"original": 783, |
|
"effective": 783 |
|
}, |
|
"mmlu_abstract_algebra": { |
|
"original": 100, |
|
"effective": 100 |
|
}, |
|
"mmlu_college_biology": { |
|
"original": 144, |
|
"effective": 144 |
|
}, |
|
"mmlu_high_school_biology": { |
|
"original": 310, |
|
"effective": 310 |
|
}, |
|
"mmlu_conceptual_physics": { |
|
"original": 235, |
|
"effective": 235 |
|
}, |
|
"mmlu_computer_security": { |
|
"original": 100, |
|
"effective": 100 |
|
}, |
|
"mmlu_college_physics": { |
|
"original": 102, |
|
"effective": 102 |
|
}, |
|
"mmlu_college_chemistry": { |
|
"original": 100, |
|
"effective": 100 |
|
}, |
|
"mmlu_high_school_statistics": { |
|
"original": 216, |
|
"effective": 216 |
|
}, |
|
"mmlu_anatomy": { |
|
"original": 135, |
|
"effective": 135 |
|
}, |
|
"mmlu_high_school_mathematics": { |
|
"original": 270, |
|
"effective": 270 |
|
}, |
|
"mmlu_machine_learning": { |
|
"original": 112, |
|
"effective": 112 |
|
}, |
|
"mmlu_high_school_physics": { |
|
"original": 151, |
|
"effective": 151 |
|
}, |
|
"mmlu_electrical_engineering": { |
|
"original": 145, |
|
"effective": 145 |
|
}, |
|
"mmlu_college_computer_science": { |
|
"original": 100, |
|
"effective": 100 |
|
}, |
|
"mmlu_high_school_chemistry": { |
|
"original": 203, |
|
"effective": 203 |
|
}, |
|
"mmlu_astronomy": { |
|
"original": 152, |
|
"effective": 152 |
|
}, |
|
"mmlu_high_school_computer_science": { |
|
"original": 100, |
|
"effective": 100 |
|
}, |
|
"mmlu_elementary_mathematics": { |
|
"original": 378, |
|
"effective": 378 |
|
}, |
|
"mmlu_college_mathematics": { |
|
"original": 100, |
|
"effective": 100 |
|
} |
|
}, |
|
"config": { |
|
"model": "vllm", |
|
"model_args": "pretrained=/cache/abhinav/models/Phase1/gptq-Qwen/Qwen2-1.5B-Instruct-garage-bAInd/Open-Platypus-mse-damp0.1-ns512-seqlen4K,tensor_parallel_size=2,dtype=auto,add_bos_token=True,gpu_memory_utilization=0.4,data_parallel_size=1,max_model_len=4096", |
|
"batch_size": "auto", |
|
"batch_sizes": [], |
|
"device": "cuda", |
|
"use_cache": null, |
|
"limit": null, |
|
"bootstrap_iters": 100000, |
|
"gen_kwargs": null, |
|
"random_seed": 0, |
|
"numpy_seed": 1234, |
|
"torch_seed": 1234, |
|
"fewshot_seed": 1234 |
|
}, |
|
"git_hash": null, |
|
"date": 1719624343.9120553, |
|
"pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.29.6\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-101-generic-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 545.23.08\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 256\nOn-line CPU(s) list: 0-255\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7763 64-Core Processor\nCPU family: 25\nModel: 1\nThread(s) per core: 2\nCore(s) per socket: 64\nSocket(s): 2\nStepping: 1\nFrequency boost: enabled\nCPU max MHz: 3529.0520\nCPU min MHz: 1500.0000\nBogoMIPS: 4900.22\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload vgif v_spec_ctrl umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca fsrm\nVirtualization: AMD-V\nL1d cache: 4 MiB (128 instances)\nL1i cache: 4 MiB (128 instances)\nL2 cache: 64 MiB (128 instances)\nL3 cache: 512 MiB (16 instances)\nNUMA node(s): 2\nNUMA node0 CPU(s): 0-63,128-191\nNUMA node1 CPU(s): 64-127,192-255\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Not affected\nVulnerability Spec rstack overflow: Mitigation; safe RET\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[pip3] triton==2.3.0\n[conda] Could not collect", |
|
"transformers_version": "4.41.2", |
|
"upper_git_hash": null, |
|
"task_hashes": {}, |
|
"model_source": "vllm", |
|
"model_name": "/cache/abhinav/models/Phase1/gptq-Qwen/Qwen2-1.5B-Instruct-garage-bAInd/Open-Platypus-mse-damp0.1-ns512-seqlen4K", |
|
"model_name_sanitized": "__cache__abhinav__models__Phase1__gptq-Qwen__Qwen2-1.5B-Instruct-garage-bAInd__Open-Platypus-mse-damp0.1-ns512-seqlen4K", |
|
"system_instruction": null, |
|
"system_instruction_sha": null, |
|
"fewshot_as_multiturn": false, |
|
"chat_template": null, |
|
"chat_template_sha": null, |
|
"start_time": 7638031.049041288, |
|
"end_time": 7641735.991916678, |
|
"total_evaluation_time_seconds": "3704.942875389941" |
|
} |